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FOREWORD

The use of radioactive material offers a wide range of benefits to medicine, 
research and industry throughout the world. Precautions are necessary, however, 
to limit the exposure of people to the radiation emitted. Where the amount of 
radioactive material is substantial, as in the case of radiotherapy or industrial 
radiography sources, great care is required to prevent accidents which could have 
severe consequences. Nevertheless, in spite of the precautions taken, serious 
accidents involving radiation sources continue to occur, albeit infrequently. 
The IAEA conducts follow-up reviews of such serious accidents to provide an 
account of their circumstances and consequences, from which organizations 
with responsibilities for radiation protection, safety of sources and emergency 
preparedness and response may learn.

A serious radiological accident occurred in Georgia on 2 December 2001, 
when three inhabitants of the village of Lia found two metal objects in the forest 
while collecting firewood. These objects were 90Sr sources with an activity of 
1295 TBq. The three inhabitants used the objects as heaters when spending 
the night in the forest. The major cause of the accident was the improper and 
unauthorized abandonment of radiation sources in Georgia and the absence of 
clear labels or radiation signs on the sources warning of the potential radiation 
hazard. Under the Convention on Assistance in the Case of a Nuclear Accident 
or Radiological Emergency (Assistance Convention), the Georgian authorities 
requested assistance from the IAEA to advise on the dose assessment, source 
recovery and medical management of those involved in the accident.

For their support provided under the Assistance Convention, the IAEA 
wishes to express its thanks to France and its Institute for Radiological Protection 
and Nuclear Safety, the Burn Treatment Centre of the Percy Military Training 
Hospital, in Paris, and the Russian Federation and its Burnasyan Federal Medical 
Biophysical Center 

The IAEA is grateful to the Government of Georgia for the opportunity to 
report on this accident to disseminate the valuable lessons learned. In particular, 
the IAEA wishes to express its gratitude to the Nuclear and Radiation Safety 
Service of the Ministry of Environment Protection of Georgia, for their assistance 
in preparing this publication. The IAEA officer responsible for the preparation 
of this publication was P. Zombori of the Incident and Emergency Centre, 
Department of Nuclear Safety and Security.
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EDITORIAL NOTE

This publication is based on information made available to the IAEA by, or through, 
the authorities of Georgia. Although great care has been taken to maintain the accuracy of 
information contained in this publication, neither the IAEA nor its Member States assume any 
responsibility for consequences which may arise from its use.

The report does not address questions of responsibility, legal or otherwise, for acts or 
omissions on the part of any person.

The use of particular designations of countries or territories does not imply any 
judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of 
their authorities and institutions or of the delimitation of their boundaries.

The depiction and use of boundaries, geographical names and related data shown on 
maps do not necessarily imply official endorsement or acceptance by the IAEA.

The mention of names of specific companies or products (whether or not indicated as 
registered) does not imply any intention to infringe proprietary rights, nor should it be construed 
as an endorsement or recommendation on the part of the IAEA.

The authors are responsible for having obtained the necessary permission for the IAEA 
to reproduce, translate or use material from sources already protected by copyrights.

Material made available to persons who are in contractual relation with governments 
is copyrighted by the IAEA, as publisher, only to the extent permitted by appropriate national 
regulations.
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1. INTRODUCTION

1.1. BACKGROUND

On 2 December 2001, an accidental overexposure to radiation of three 
people occurred in a forest approximately 50 km east of Lia, a village in Georgia. 
The event resulted from the inadvertent use of two hot objects found as personal 
heaters, which were later found to be two 90Sr radioisotope sources with an 
activity of 1295 TBq. Some 3–3.5 h after their first contact with the sources, the 
three individuals complained of nausea, headaches, dizziness and vomiting.

One to two weeks later, two of the individuals developed a burning 
sensation on their backs and one developed the same sensation on his right hand. 
Their families reported the symptoms to the local police, who advised that they 
proceed to the local hospital and request medical help. The three individuals 
were hospitalized on that same day, 22 December 2001, in the city of Zugdidi 
(the administrative centre of the region). Based on the anamnesis and clinical 
picture of the three patients, acute radiation syndrome (ARS) was diagnosed, and 
the case was reported to the Emergency Medical Center in T’bilisi, the capital 
of Georgia. A request to transfer the patients to the Institute of Hematology and 
Transfusiology (IHT) in T’bilisi was issued. At the IHT, general treatment was 
provided to all three patients, which included, among other things, medication for 
antibacteriological therapy and immunostimulators. 

On 4 January 2002, the Government of Georgia requested IAEA assistance 
under the Convention on Assistance in the Case of a Nuclear Accident or 
Radiological Emergency (Assistance Convention). Following this request, the 
IAEA assembled and dispatched two field teams. The first was on 5 January 2002 
to discover what had happened (fact finding) and to undertake a preliminary 
medical evaluation for the prognosis and treatment of the overexposed 
individuals. The second was on 27 January 2002 to assist in the training of the 
recovery team, searching and locating the radioactive sources, implementing 
the recovery operation, characterizing the radioactive sources, conducting a 
radiological survey of the accident site and facilitating medical assistance to the 
overexposed people.

With the help of the IAEA, two of the three patients were later transferred 
to specialized hospitals abroad. One patient was treated at the Burn Treatment 
Centre of the Percy Military Training Hospital, in Paris, France, and the other 
was treated at the Institute of Biophysics of the Burnasyan Federal Medical 
Biophysical Center, in Moscow, the Russian Federation.
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1.2. OBJECTIVE

At the request of Member States, the IAEA has, for a number of years, 
provided support and assistance and conducted follow-up investigations after 
serious accidents involving radiation sources. Reports have been published on 
these investigations, which cover radiological accidents involving workers, the 
public and patients undergoing radiotherapy. 

The objectives of this publication are to compile information on the causes 
and consequences of the accident, make recommendations and disseminate the 
information — particularly the lessons learned from the event — in order to 
avoid similar occurrences and to minimize the consequences.

1.3. SCOPE

This publication describes the circumstances and events surrounding the 
accident, its management and the medical treatment of the people exposed. It 
also describes the dose reconstruction calculations and biodosimetry assessments 
conducted. A number of uncertainties remain relating to some details of the 
accident. However, sufficient information is available for a publication that 
provides substantive conclusions and advice.

1.4. STRUCTURE

Background information on the location of the accident, details of the 
radioactive sources and a chronology of the events are provided in Section 2. 
The IAEA assistance missions are presented in Section 3, and the recovery of the 
radioactive sources is discussed in Section 4. Section 5 addresses the results of the 
biological dosimetry. The medical management of the individuals exposed as a 
result of the accident, including dose assessment and detailed biodosimetry data, 
is discussed in Sections 6–9. Section 10 provides a summary of the conclusions 
and presents recommendations and lessons learned.
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2. BACKGROUND INFORMATION

2.1. LOCATION OF THE ACCIDENT

Georgia is a sovereign State in the Caucasus region of Eurasia. It is bound 
to the west by the Black Sea, to the north by the Russian Federation, to the south 
by Turkey and Armenia, and to the east by Azerbaijan. The National Statistics 
Office of Georgia reports a population of 4 483 800 as of 1 January 2013. The 
village of Lia is located in the district of Tsalenjhikha and is approximately 
320 km north-west of T’bilisi, the capital of Georgia (see Fig. 1).

2.2. RADIOISOTOPE THERMOELECTRIC GENERATORS

In the former Union of Soviet Socialist Republics, various types of 
generator were designed on the basis of different radioisotopes [1]:

 — Cerium-144 (with an activity of 740 TBq);
 — Caesium-137 (with an activity of 1850–5550 TBq);
 — Strontium-90 (with an activity of up to 3700 TBq).

These radioactive sources were used as sources of heat in thermoelectric 
energy transformers [2]. The typical power range of nuclear thermoelectric 
generators is between 1 and 1000 W, and their working life is between 10 and 
20 years.

Beta 1, Beta 2, Beta 3, Beta C and Beta M are different types of generator 
designed for use with radioisotopes 144Ce and 90Sr. These generators were used as 
sources of electric power for radiometric devices and navigational systems.

By comparing the data provided by Georgia with the information provided 
in Refs [1, 2], it is possible to conclude that the radioactive sources involved in 
the accident belonged to the category of radioisotope thermoelectric generators 
(RTGs) of the Beta M type, with an activity of 1295–1480 TBq.

Following the accident, it was determined that eight RTGs of the 
Beta M type had been brought into Georgia in the early 1980s to serve the radio 
relay system between the Engury hydroelectric station and Hudoni hydroelectric 
station, which was under construction at the time. These generators were placed 
in pairs at four substations located in areas where there were no other means of 
electrical power supply. In these generators, the heat generating elements were 
90Sr radioisotope sources with an activity of 1480 TBq and a heat power of 250 W. 
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The bremsstrahlung gamma radiation dose rate at 1 m was 1 Sv/h. Figure 2 
shows the vertical cross-section of this type of generator, with a corresponding 
description of its parts.

1. Heat dissipater 
2. Thermobattery 
3. Inner radiation protection (tungsten) 
4. Radionuclide heat source 
5. Heat isolation 
6. Framework 
7. Outer radiation protection 

FIG. 2.  Radioisotope thermoelectric generator, Beta M type.

After the construction of the Hudoni hydroelectric station was stopped, 
the radio relay system lost its function, and the generators were left without 
supervision and control. By the end of the 1990s, the generators were 
disassembled, with the radioactive sources exposed and removed from their 
original location. Of the eight 90Sr radioactive sources, only six have so far been 
found.

The first pair of radioactive sources was found in the Svaneti region, near 
the village of Idiani, in 1998. They were removed and stored the same year. 
A second pair was found in the same region, near the village of Laburtskhila, 
in 1999. They were also removed and stored in May 1999. No one who came into 
contact with the radioactive sources received a high irradiation dose or sought 
help, and routine medical examinations did not reveal any abnormalities.

A third pair of 90Sr sources were found by three inhabitants of the village of 
Lia in December 2001. This publication describes the accident.
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2.3. CHRONOLOGY OF THE ACCIDENT

On a cold day of 2 December 2001, three inhabitants of Lia (later designated 
as Patients 1-DN, 2-MG and 3-MB) drove their truck approximately 45–50 km 
east of Lia to collect firewood. At around 18:00, they found two containers — 
metallic, cylindrical objects — lying on a forest path. Around them, the snow 
had curiously thawed within a radius of approximately 1 m, and the wet soil 
was steaming. All three individuals stated that the two, rather heavy, cylindrical 
objects (8–10 kg, 10 cm × 15 cm) were found by chance while carrying out their 
usual task of collecting firewood. 

One of the three men (Patient 3-MB) picked up one of the cylindrical 
objects and, finding that it was hot, dropped it immediately. They planned to 
place the gathered wood in their truck the next morning, and because it was 
getting dark, they decided to spend the night in the forest, using the hot objects 
they had discovered as personal heaters. 

Patient 3-MB used a strong wire to lift one of the hot objects, hooking it 
into the holes of its frame and carrying it for approximately 1 min, to a place 
2–3 m from the forest path, just behind a large rock nearby. Patients 1-DN and 
2-MG lit a fire to prepare dinner and for their overnight stay in the open air. 
As the second object’s frame did not have any holes, Patient 3-MB lifted the 
object from the ground while Patient 2-MG curved a strong wire around it. This 
procedure took approximately 2 min. Patient 3-MB then moved the object to the 
rock (carrying it on a wire 0.5 m long) and placed it near the other source of heat. 

The three individuals warmed themselves during the night using the 
open fire on one side, sitting and lying around it, and not far from the hot 
cylindrical objects, which they placed at a distance of up to 1 m behind their 
backs. Patients 1-DN and 2-MG lay next to these objects for 1–1.5 h each during 
the night, coming into very close proximity to them: the distance between the 
cylindrical objects and the upper and middle sections of their backs was around 
10 cm. It is important to note that since none of the three individuals concerned 
owned a watch, all times and intervals are approximate. After dinner, they 
consumed some alcohol (vodka). However, they felt unusually sick after only a 
small amount (about 100 mL) and could not sleep.

Approximately 3–3.5 h after their first contact with the radioactive 
sources, they began to suffer from nausea, headaches, dizziness and vomiting. 
Patient 1-DN vomited a few minutes after drinking some vodka, Patient 2-MG 
vomited 30 min later and Patient 3-MB began vomiting around 1 h later. The 
vomiting was very intensive and lasted throughout the night. In the morning, they 
loaded only half of the gathered wood into the truck, as they were exhausted 
and felt weak from a lack of sleep. They arrived back at their homes, in Lia, at 
approximately 17:00 on 3 December 2001. 
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Apart from the first night, there were no further episodes of vomiting. 
According to an interview, Patients 1-DN and 2-MG had carried one of the 
two sources on their backs, tied to the top of a wooden rod, for several hours. 
However, some uncertainties remain concerning the exact scenario of the 
accident (see Tables 1 and 2).

TABLE 1.  CHRONOLOGY OF MEDICAL SYMPTOMS AND MANAGEMENT 
OF THE THREE PATIENTS (cont.)

Date Days after exposure Event

2 Dec. 2001 0 Approximately 3–3.5 h since first contact with 
the radioactive sources, Patients 1-DN, 2-MG 
and 3-MB vomit several times during the night. 
They also complain of nausea, headaches and 
dizziness.

3 Dec. 2001 1 Patient 2-MG experiences repeated diarrhoea  
and develops a skin reaction type urticaria. Itching 
maculae cover the whole surface of his body.

4 Dec. 2001 2 Patient 2-MG goes to the village outpatient medical 
department but does not mention his contact with 
the “heating device”. The local doctor suspects 
intoxication and treats him with an infusion of 
saline and Haemodes to eliminate toxic metabolites 
via renal clearance and an intramuscular injection 
of Suprastin to treat a possible allergic reaction. 
Following this treatment, his symptoms disappear 
in a day.

10 Dec. 2001 8 Patient 3-MB develops erythema, a burning 
sensation and oedema on the right hand, and  
cannot close his fingers. The skin is flattened.

13–14 Dec. 2001 11–12 Dry desquamation appears on the right hand of 
Patient 3-MB.

15 Dec. 2001 13 Patients 1-DN and 2-MG feel a burning sensation 
and itching on their backs.

17 Dec. 2001 15 Patient 1-DN experiences pain in his throat and 
loses his voice. Patient 2-MG develops the same 
type of allergic reaction as on day 1 after exposure 
and dry desquamation on his back.
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TABLE 1.  CHRONOLOGY OF MEDICAL SYMPTOMS AND MANAGEMENT 
OF THE THREE PATIENTS (cont.)

Date Days after exposure Event

22 Dec. 2001 20 All three patients are hospitalized in Zugdidi, 
Georgia. The three patients are diagnosed with 
ARS, and the case is reported to the Emergency 
Medical Center in T’bilisi (Ministry of Labour, 
Health and Social Affairs, Georgia), which  
requests a transfer of the patients to the IHT 
in T’bilisi.

23 Dec. 2001 21 All three patients are transferred to the IHT 
in T’bilisi.

23 Jan. 2002 52 After receiving treatment, Patient 3-MB is 
discharged from hospital and monitored as  
an outpatient.

31 Jan. 2002 60 The IAEA receives a request from the Government 
of Georgia for assistance on specialized medical 
treatment abroad for Patients 1-DN and 2-MG.

21 Feb. 2002 81 Patient 1-DN is admitted to the Institute of 
Biophysics of the Burnasyan Federal Medical 
Biophysical Center, in Moscow, the Russian 
Federation. Patient 2-MG is admitted to the  
Burn Treatment Centre of the Percy Military 
Training Hospital, in Paris, France, for further 
medical treatment.

18 Mar. 2003 471 Patient 2-MG is treated for CRS. He is discharged 
from hospital and returned to Georgia.

13 May 2004 893 The critical health status of Patient 1-DN and 
impairment to multiple organs results in his death.

Note:  ARS — acute radiation syndrome; CRS — cutaneous radiation syndrome; 
IHT — Institute of Hematology and Transfusiology.
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TABLE 2.  CHRONOLOGY OF THE RECOVERY AND LOCAL POPULATION 
MONITORING

Date Days after exposure Event

23 Dec. 2001 21 An initial attempt is made by the Georgian 
authorities to determine the exact location of the 
heating devices (suspected radioactive sources). 
However, because of an impassable road conditions 
and bad weather, this attempt fails.

29 Dec. 2001 27 The second attempt to locate the suspected 
radioactive sources is successful. The exact 
location is determined, their physical condition  
is examined and a video recording is made.

4 Jan. 2002 33 The IAEA receives a request from the Government 
of Georgia for assistance in recovering the 
radioactive sources.

5 Jan. 2002 34 The Georgian medical team conduct medical 
examinations on approximately 20 residents of Lia.

6–7 Jan. 2002 34–37 A team of Georgian specialists from the NRSS of 
the Ministry of Environment Protection and  
Natural Resources of Georgiaa, the DESCD and  
the Institute of Physics, accompanied by IAEA 
experts, attempt to travel to the location of the 
radioactive sources to recover them. Unfortunately, 
due to extreme weather conditions, the team is not 
able to reach the location, and the recovery attempt 
fails.

2 Feb. 2002 62 A team of Georgian specialists from the NRSS, 
DESCD and the Institute of Physics, accompanied 
by IAEA experts reach the location and recover the 
radioactive sources safely. 

Note:  DESCD — Department of Emergency Situations and Civil Defence of the Ministry of 
Internal Affairs; NRSS — Nuclear and Radiation Safety Service.

a The Ministry of Environment Protection and Natural Resources of Georgia became the 
Ministry of Environment Protection of Georgia in 2011.
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3. IAEA MISSIONS

3.1. MISSION OBJECTIVES

The IAEA conducted two expert missions to Georgia. The first took place 
from 5 to 11 January 2002 and was undertaken with the following objectives:

(1) To evaluate the order of magnitude of the doses incurred by people, among 
other things, by analysing the information available and from physical 
measurements; 

(2) To undertake a preliminary medical evaluation for the prognosis and 
treatment of the overexposed individuals;

(3) To identify issues for which the IAEA could offer to provide and coordinate 
assistance to minimize the radiological consequences;

(4) To recommend any additional assistance the IAEA could provide to 
Georgia.

The second mission took place from 27 January to 9 February 2002 and 
was undertaken with the following objectives:

(a) To provide support and advice during the preparatory and implementation 
phases of the operation to recover the two orphan 90Sr radioactive sources 
from a mountainous and remote area of the Tsalenjika region of western 
Georgia;

(b) To hold an IAEA technical meeting on orphan sources in Georgia.

3.2. MISSION RESULTS

3.2.1. Results of the first IAEA mission

The IAEA team participated in meetings with the Minister of Environment 
Protection and Natural Resources of Georgia and the representatives of the 
Department of Emergency Situations and Civil Defence of the Ministry of 
Internal Affairs (DESCD). The situation regarding the radiological emergency 
was presented and discussed on the basis of a short video that had been recorded 
by the Georgian authorities on 29 December 2001, which contained images of 
the radioactive sources and their location. The main concerns at this stage were:
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(a) Production of shielding containers for each radioactive source;
(b) Organization and planning of the recovery operation based on the 

radiological and weather conditions in the area;
(c) Risk of losing the radioactive sources due to worsening weather conditions;
(d) Addressing the concern of the local population about their safety and well 

being.

The IAEA team were consulted on the status of the three hospitalized 
patients at the IHT in T’bilisi. It was concluded that the diagnosis and treatment 
of the patients was appropriate and could continue in T’bilisi. None of the 
patients was in a life threatening condition, and all of them were in a stable 
phase of haematological remission. Patients 1-DN and 2-MG had moderately 
severe extended superficial radiation burns to the back, which were in a phase 
of spontaneous recovery. It was agreed that Patient 3-MB had a mild radiation 
injury. He could be discharged from the hospital within ten days and have a 
follow-up appointment in the outpatient clinic of his home village, Lia. 

The IAEA team contributed to an assessment of the health status of the 
local population, which had been performed by a medical team from the Ministry 
of Labour, Health and Social Affairs on 8 January 2002. The 18 medical doctors 
who performed the screening were briefed twice on the possible early and late 
health consequences of exposure to radiation, the types of injury observed in 
recent severe radiation accidents and their management. Members of the local 
population with potential radiation exposure were consulted, examined and 
relieved of their anxiety following a discussion of the negative findings. No 
radiation induced health effects were found among the 300 screened inhabitants. 

The responsibilities of the Georgian authorities were presented by the IAEA 
team at the final debriefing of the first mission and were specified as:

(1) To urgently secure the location of the radioactive sources.
(2) To initiate planning of the recovery, with the participation of several 

organizations for logistical support, including aspects such as:
(i) Transportation;

(ii) Security;
(iii) Preparation of the shielding containers;
(iv) Selection of the equipment for the survey and personnel monitoring;
(v) Selection and training of the staff involved;

(vi) Training at a location simulating the real recovery (mock-up);
(vii) Transportation and storage of the sources;

(viii) To provide medical assistance for the three patients.
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3.2.2. Results of the second IAEA mission

3.2.2.1. The patients

The IAEA team strongly supported the local doctors’ opinion that it 
was essential for the well being of the two most severely injured patients 
— Patients 1-DN and 2-MG — to be transferred to a specialized hospital for 
the treatment of ARS. It was also recommended that the IAEA facilitate the 
specialized treatment to be received abroad.

3.2.2.2. The recovery operation

The recovery plan developed by the experts from the Institute of Physics 
together with the staff of the Ministry of Environment Protection and Natural 
Resources of Georgia was an excellent example of how to recover orphan 
radioactive sources safely with limited financial and technological resources. 
This comprehensive plan included:

 — Building a special lead transport and storage container (27 cm thick, 90 cm 
high and weighing 5.5 t) to shield the two radioactive sources;

 — Manufacturing special steel remote handling tools and tongs to collect the 
radioactive sources;

 — Adapting an old army truck to transport the container;
 — Training DESCD personnel (26 soldiers) to recover the radioactive sources, 
while keeping their individual doses well below limits set by international 
standards.

In addition, the plan addressed the logistics, which included, among other 
things:

 — Food supplies for two days;
 — Fuel for 12 vehicles (seven cars, three trucks, one bus and one bulldozer);
 — Field accommodation for approximately 50 people.

The IAEA provided personal thermoluminescent dosimeters (TLDs) 
and ensured that the preparation and recovery operations were consistent with 
international radiation safety standards and good practice.

Local and international media exhibited a great deal of interest in this 
event. The IAEA participated in dealing with media enquiries. Despite a lack 
of experience with such a complex event, the Georgian authorities (Ministry 
of Environment Protection and Natural Resources of Georgia, and Ministry of 
the Interior) managed the public and media interest in a professional manner. 
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As requested by both Ministries, the IAEA team leader participated in several 
events with the media, with the purpose of assisting the Georgian authorities 
in providing information on the event to the local population. The IAEA team 
assisting in Georgia and IAEA staff located at the IAEA in Vienna, Austria, were 
found to be invaluable in addressing international media inquiries.

4. RECOVERY OF THE RADIOACTIVE SOURCES

4.1. INITIAL ASSESSMENT

The radioactive sources were located in a barren, unpopulated region, 
on a dirt track road 28 km from Lia. Photskhoetseri is the nearest village and 
residential area to the location of the radioactive sources. Situated beneath the 
high altitude dam of the Enguri hydroelectric station, the village’s location from 
the radioactive sources is 18 km along the dirt track road, but only 4–5 km in 
a straight line. Photskhoetseri is separated from the location of the radioactive 
sources by a mountain ridge, the high altitude dam and a reservoir. 

The dirt track leading to the radioactive sources was primarily used by local 
inhabitants and woodcutters. Driving on the dirt track road only seemed possible 
by very experienced drivers familiar with the track, such as woodcutters that 
owned high powered, three axle cross-country vehicles. The final 400 m to the 
location of the radioactive sources was found to be completely impassable, as it 
was blocked by rocks from a landslide.

The first attempt to determine the exact location of the radioactive sources 
and to examine their condition failed because of the near impassable road and 
poor meteorological conditions. The second attempt on 29 December 2001 was 
successful. A team consisting of specialists from the Institute of Physics, the 
DESCD and the NRSS arrived at the area and identified the exact location of the 
radioactive sources. The team verified the condition of the radioactive sources, 
made all the necessary measurements, took photographs and recorded a video. 

It is worth noting that the radioactive sources were located just off the dirt 
track road in a hollow and were isolated by a heap of rocks and earth (see Fig. 3). 
Due to these factors, the radiation on the side of the dirt track road was partially 
shielded, and the dose rate measured from the dirt track road, even in close 
proximity to the radioactive sources, was not very high. Close to the radioactive 
sources, on the other side of the shielded dirt track road and around 5 m from the 
sources, the dose rate was 1.3 mSv/h. For unshielded radioactive sources, this 
value would be approximately 80 mSv/h.
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FIG. 3.  Initial location of the radioactive sources under a large stone.

The additional shielding provided by the heaps of rock and earth was 
very important, as it allowed the recovery team additional time to conduct their 
preparatory work (repair the road, park the vehicle loaded with the container 
and arrange for recovery devices to be placed in convenient locations) under 
conditions of relatively low radiation doses.

In addition, the fact that the nearest inhabited areas were quite far from 
the radioactive sources meant that the radioactive sources posed no danger to 
the local population. Furthermore, these types of radioactive source are specially 
manufactured using super resistant ceramics that are hermetically sealed in 
double capsules made of fireproof stainless steel. This steel is resistant to any 
aggressive medium and practically excludes the danger of radioactive or toxic 
contamination of the environment. Thus, there was no urgent need for prompt 
removal of the radioactive sources to limit potential exposure to the public. If 
the areas of high dose rate near the radioactive sources had been marked and the 
local population had been warned, it would have been quite possible to delay 
the operation until spring or summer. However, one significant development 
was taken into account for the expedited recovery of the radioactive sources: the 
public concern and fear among the inhabitants of the Tsalenjhikha region had 
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gradually been increasing. For this reason, the Government of Georgia decided 
to execute the recovery operation of the radioactive sources as soon as possible, 
despite the impassability of the road and poor meteorological conditions.

4.2. RECOVERY OPERATION PLAN

4.2.1. Organizations responsible for the recovery operation

According to Georgian legislation, the main organizations responsible 
for conducting the recovery operations are the DESCD and the NRSS. They 
were responsible for formulating the recovery plan, establishing and training 
the recovery team, and conducting the safe transportation of the container 
(in which the radioactive sources had been placed) to the storage facility. The 
NRSS was responsible for constructing the shielding container, distributing 
special devices (manipulators), safe storage of the container, and individual 
dose and dose monitoring during the recovery operation. The NRSS was also 
responsible for conducting a medical survey of the recovery team members 
(together with the Ministry of Labour, Health and Social Affairs) before and 
after the operation, issuing special agreements with the recovery team members, 
accounting of expenditures and providing information to other governmental and 
non-governmental institutions and the public.

The DESCD and the NRSS were responsible for selecting the training 
location and providing transport, selecting the means of road transport for 
transferring the container with its cargo of radioactive sources to the storage 
facility and the selection of people to participate in the recovery operation. The 
representative of the Georgian President in the Mengrelia-High Svaneti region 
was responsible for repairing the road from the Enguri dam to the location of 
the radioactive sources. Funds from the Georgian State budget provided financial 
support for the operation under a programme of the Ministry of Environment 
Protection and Natural Resources of Georgia entitled Protection of the Georgian 
Population from Harmful Effects of Ionizing Radiation.

4.2.2. Recovery operation strategy and tactics

The area in which the radioactive sources were located was characterized 
by poor meteorological conditions and high dose rate measurements, which made 
the conduct of operations particularly difficult. Taking into account the potential 
for high radiation exposure (the dose rate from each radioactive source at 1 m was 
in the order of 1 Sv/h), it was decided that each recovery team member would not 
be allowed to work with the radioactive sources for more than 2 min. It should 
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also be noted that team members were allowed to remain for several minutes 
in the vicinity of the radioactive sources (at 20 m). It was therefore necessary 
to create a recovery team of 20–25 people. The maximum dose received during 
the operation was limited to 20 mSv. In accordance to the as low as reasonably 
achievable (ALARA) optimization principle, every member of the team was 
required to work as far away as possible from the radioactive sources for the 
minimum time period, on which the team members were briefed during their 
training.

4.2.3. Preparatory actions

It was necessary to conduct the following preparatory actions before 
initiating the recovery operations:

(1) A special shielding container was constructed that could hold both 
radioactive sources (see Fig. 4). One of the radioactive sources had a 
mushroom like cap, possibly containing a tungsten protective plate, and the 
second had a metal outer shell cut into two pieces, in which it is believed 
a tungsten protective cup was originally placed. The maximum dimension 
of the latter radioactive source was presumed to be approximately 30 cm. 
Therefore, the diameter of the inner cylinder of the container was required 
to be greater than 30 cm. The container was also required to have protection 
that ensured the dose rate on its surface was lower than the maximum dose 
rate allowed for the transportation of the container. Thus, a container was 
constructed with a protective layer of lead 25 cm thick. The mass of the 
container was around 5.5 t. 

(2) Special manipulating devices and tools (manipulators) were designed, 
manufactured and tested (see Fig. 5). A vessel with handles on opposite 
sides was required to ensure ease of movement when loading the radioactive 
sources into the container and to prevent the user being closer than 2 m 
(see Fig. 6).

(3) A medical survey of the recovery team members was conducted.
(4) Training for the recovery team was conducted in conditions similar to those 

they would experience during the operation.
(5) Arrangements were made to provide individual dose monitoring for the 

recovery team during the recovery operation.
(6) A detailed plan of the recovery team’s activities was prepared to determine 

the timing, length of stay and positions for the members of the rescue team 
at different distances away from the radioactive sources. Based on Georgian 
regulations at the time of the emergency, the dose limit for occupational 
workers (20 mSv that can be received at one time for emergency situations 
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FIG. 4.  Shielding container for the radioactive sources.

FIG. 5.  Sketch of the manipulating devices used in the recovery operation.

FIG. 6.  Special manipulator used for carrying the radioactive sources during the recovery 
operation.
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and during the process of liquidation) was used as a basis for establishing 
the maximum doses allowed for the members of the rescue team. With due 
caution and to ensure that the doses to workers remained below the dose 
limit, it was decided to plan the work in such a way that the maximum dose 
received by any individual would not exceed 10 mSv. For the calculations 
used for determining the working time in the radiation area, see Appendix I.

(7) Preparations were made to conduct radiation monitoring of the area where 
the radioactive sources were located after the recovery operation to confirm 
the operation had been completed successfully.

(8) The road leading to the radioactive sources was repaired so that it would 
be possible for the vehicle, loaded with the container, to be positioned at a 
maximum distance of 40–50 m away from the radioactive sources.

(9) A special means of transport was provided for the container prepared for 
the radioactive sources. A three axle cross-country vehicle was selected, 
and the container was secured in such a way that it could withstand any 
level of impact and sudden movements encountered when travelling on 
the road from the village of Photskhoetseri to the radioactive sources. 
Figure 7 shows the three axle cross-country vehicle with the container at 
the recovery location. 

FIG. 7.  Vehicle with the container after the recovery operation.
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(10) Arrangements were made to provide one day’s accommodation for the 
recovery team during the recovery operation.

(11) Arrangements were made to provide a special traffic escort for the safe 
transfer of the radioactive sources to the storage facility.

4.2.4. Transporting the recovered radioactive sources

The following requirements were drawn up to ensure the safe transportation 
of the recovered radioactive sources:

(1) Radioactive sources were to be placed into a specially designed shielding 
container that is fixed securely to the vehicle.

(2) Throughout the entire transportation period, the vehicle with the container 
was to be escorted by police cars under secure conditions.

(3) Maximum speed of the vehicle with the containers was to be 50 km/h 
(without the radioactive sources) and 30 km/h (with the radioactive 
sources).

(4) Special attention was to be paid to the mountain road, where tractors and 
other specialized machinery was to be used to clear the road immediately 
before the vehicle with the container passes. 

The DESCD and the NRSS were responsible for the safe transportation of 
the radioactive sources to the storage facility. The DESCD was responsible for 
choosing the means of transport and its technical arrangement. The head of the 
DESCD was personally responsible for arranging the training of the recovery 
team members.

4.2.5. Recovery team

The realization of the recovery operation required team members with 
sufficient qualifications and skills. It was decided to assign 24 people to the 
recovery operation. Each member of the team was responsible for a clearly defined 
activity. It was also decided to prepare a reserve team in case reinforcements 
were required. Altogether, 41 people were trained for the recovery operation. The 
purposes of training were:

(a) To strengthen the skills of the recovery team;
(b) To ensure harmonization of the activities undertaken among the recovery 

team;
(c) To train the recovery team on the effective use of the manipulating devices; 
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(d) To obtain feedback that would allow for improving the effectiveness 
of the recovery operation and to make necessary changes in the plan, as 
appropriate.

The core of the recovery team consisted of members of the NRSS who had 
previous experience in conducting recovery operations. The head of the NRSS 
was assigned as leader of the recovery team. The head of the NRSS Emergency 
Situation Department was responsible for constructing the shielding container and 
all manipulating devices. The deputy heads of the NRSS and the DESCD were 
responsible for conducting the training. The head of the NRSS Department for 
Inventory, Control and Regulation of Nuclear and Radiation Activity supervised 
radiation monitoring and obtaining individual consents from the members of 
the recovery team. Negotiation of the agreements with the recovery team was 
the responsibility of the principal accountant of the Ministry of Environment 
Protection and Natural Resources of Georgia and the accountant of the NRSS.

The head of the Radiation Safety Unit of the Institute of Physics and the 
head of the Dosimetric Assessment Unit of the National Oncology Centre were 
responsible for individual dose monitoring. The deputy director of the Institute 
of Physics, the head of its Applied Research Centre and the head of its Radiation 
Safety Unit were assigned as consultants in the implementation of the recovery 
operation.

4.2.6. Recovery operation schedule

The period of time for conducting the recovery operation depended on the 
following factors:

 — Road and meteorological conditions;
 — Preparation of technical equipment;
 — Modes of transport.

4.2.7. Deployment of teams and resources for conducting the recovery 
operation

The day before the recovery operation, the recovery team was deployed in 
Zugdidi. All modes of transport were prepared in Djvari. A detailed description 
of the operation activities was attached to the recovery operation plan.
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4.3. RECOVERY OPERATION

The recovery of the radioactive sources was executed on 2–3 February 2002. 
All preparatory actions had been completed, and a series of training sessions had 
been held in preparation for the operation. 

The operation was conducted under poor road and meteorological 
conditions. It took 3.5 h to travel 18 km from the village of Photskhoetseri to the 
location of the radioactive sources. The majority of the road was covered with 
recently fallen snow, and travel was only possible using a towing tractor provided 
by the local authorities (see Figs 8 and 9). 

After arriving at the site, the preparatory work and preliminary 
measurements took 30 min. The recovery work (moving the radioactive sources 
to the road and loading them into the container) was completed within 20 min. 
The preparation for returning to the village of Photskhoetseri took 30 min, and 
the travel time was 3.5 h.

The NRSS, the DESCD and the Institute of Physics were commissioned 
to carry out the recovery of the radioactive sources and to transport them to 
their place of storage, with the help of the Institute of Radiology, the Georgian 
Academy of Agricultural Sciences and other relevant departments.

FIG. 8. The middle section of the road leading to the radioactive sources.
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FIG. 9.  The final section of the road leading to the radioactive sources.

During the recovery operations, the following steps were taken:

(1) The vehicle and container were positioned so the rear of the vehicle was 
close to the radioactive sources.

(2) Two members of the recovery team installed stairs on the vehicle.
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(3) The recovery team was divided into two groups. The first was positioned 
in an area located 20 m from the radioactive sources. The second remained 
beyond that area at a safe distance from the location of the radioactive 
sources.

(4) Two members of the recovery team placed the manipulating devices near 
the location of the radioactive sources.

(5) One member of the recovery team cleared the surrounding area of the 
radioactive sources.  

(6) One member of the recovery team collected one of the radioactive sources 
and placed it into a special vessel.

(7) Two members of the recovery team transferred the radioactive source in the 
special vessel to the vehicle.

(8) Two members of the recovery team standing on the vehicle received the 
radioactive source and placed it into the container.

(9) In the event that a recovery team member became unable to complete their 
activity (e.g. due to the dose received), a substitute person was ready and 
available.

(10) The second half of the recovery team conducted the same actions for the 
second radioactive source.

(11) One person conducted individual dosimetry control for all members of the 
recovery team and recorded the doses.

(12) Two members of the recovery team conducted dose rate monitoring.
(13) All actions were led by a team member assigned to give commands to start 

or to stop, according to the plan. A signal to stop was given to every worker 
after 40 s from the beginning of each activity, indicating replacement by the 
next worker.

The IAEA used TLDs and the NRSS used two electronic dosimeters as 
personal dosimeters. The data gathered is provided in Table 3, which shows the 
equivalent doses received by the personnel involved in the recovery operation. 
The estimation of the activity of the radioactive sources was performed on the 
basis of measurements taken at their location. 
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TABLE 3.  EQUIVALENT DOSES RECEIVED BY THE PERSONNEL 
INVOLVED IN THE RECOVERY OPERATION (cont.)

Worker no.
Equivalent dose (µSv)

IAEA data NRSS data (DOSICARD)a

1 80 30

2 380 302

3 250 —b

4 250 —b

5 1160 876

6 170 —b

7 950 952

8 60 16

9 110 550

10 290 219

11 50 11

12 450 296

13 60 11

14 590 532

15 260 203

16 290 195

17 340 304

18 70 —b
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TABLE 3.  EQUIVALENT DOSES RECEIVED BY THE PERSONNEL 
INVOLVED IN THE RECOVERY OPERATION (cont.)

Worker no.
Equivalent dose (µSv)

IAEA data NRSS data (DOSICARD)a

19 90 58

20 100 32

21 290 205

22 620 878

23 —b 18

24 —b 334

a Every electronic dosimeter was set for two levels of alarm for the 
received dose.

b —: data not available.

The radioactive sources were situated several centimetres from each other. 
The total dose rate was measured at a distance of 2 m. The measurement was 
made with a Radiagem dose rate meter. The distance was measured with a 
calibrated stiff stick, fixed at the end of the telescope probe of the dosimeter. 
The distance was measured from the midpoint between the radioactive sources. 
The measurements showed that the mean value of the dose rate at a distance 
of 2 m was 300 mSv/h. According to the measurements taken during the first 
examination of the location (29 December 2001), the dose rate was 150 mSv/h 
at 1.5 m from the radioactive sources, which was significantly less than the 
results of the most recent measurements. It seems that for the first measurement, 
the detector was shielded by the ledge of the rock, under which the radioactive 
sources were located.

Denoting the dose rate (mSv/h) at distance R (m) by d(R), it was found that:

d( . ) mSv h2 00 300≈  (1)
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Assuming that half of this dose rate originates from one source, it is possible 
to estimate the dose rate for one source at a distance of 1 m (d0):

d d
R

R
d0

2

1

2

1 00
1
2

2 00 2 2 00 600( . ) ( . ) ( . )≈









= = mSv h  (2)

This experimental value is less than the value given in the source certificate:

d R0 1 00 100 1000( . )= =h mSv h  (3)

After enclosing the radioactive sources in the container, the dose rate was 
measured from the top of the open container. The distance from the radioactive 
sources to the detector was estimated to be 50–55 cm, taking into account the 
container dimensions. This distance is dependent on the location of the radioactive 
sources inside the container. The dose rate on the top of the container was:

d( . . ) .0 50 0 55 4 6− ≈ Sv h  (4)

Assuming again that half of this value comes from one radioactive source 
positioned at the average distance of 52 cm, the dose rate for one source at a 
distance of 1 m is estimated to be:

d d0
21 00

1
2

0 50 0 55 0 52 620( . ) ( . . )( . )= − = mSv h  (5)

This value is also less than the source certificate, but is very close to the 
value calculated from the dose rate measured at 1 m (see Eq. (2)). 

The dose rates were measured at different distances from the radioactive 
sources after they were moved to the road, and the results are presented in 
Table 4. The reading was made with a Stephen 6000 dosimeter at distances of 
approximately 25 m, 35 m and 45 m from the source. Distances were measured 
approximately by the number of steps taken and the true values might differ from 
those in Table 4.
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TABLE 4.  MEASURED VALUES FOR BOTH RADIOACTIVE SOURCES

Distance from source
to detector (m)

Source 1
(mSv/h)

Source 2
(mSv/h)

Dose rates calculated according
to source certificate data (mSv/h)a

1 ~670 ~580 ~1000

25 1.10 1.02 1.60

35 0.50 0.42 0.82

45 0.35 0.30 0.49

a For comparison, the dose rates calculated according to the data provided in the source 
certificates are given for the same distance.

It is clear that the activity of the radioactive sources is less than that of 
the certificate data, but the dose rates are close to the results of previous 
measurements (see Eqs (2, 5)).

The difference in the dose rates between the radioactive sources might be 
explained by the fact that the radioactive sources had a tungsten disc, which, 
according to the certificate, was fixed to the bottom of the cylindrical source 
(see Fig. 10). The dose rate depends on the orientation of the source to the 
detector, which could explain the difference. However, the radioactive sources 
did not have a tungsten disc. First, the weight of the radioactive sources according 
to the operators’ estimation was no greater than 10 kg — with a tungsten disc, the 
mass of the radioactive sources would have been approximately 20 kg. Secondly, 
a video recording shows that the upper part of a mushroom like cap on the 
second radioactive source was empty. The tungsten disc had been removed, so 
the anisotropy of radiation can be excluded (i.e. the intensity of the radiation was 
almost equal in all directions).

FIG. 10.  Source with and without the tungsten plate.
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The difference in dose rates was probably because the dose rate of the first 
radioactive source was measured on the road, with the second radioactive source 
located just behind. This may have caused the second radioactive source to have 
influenced the dose rates of the first. When the radioactive sources were located 
in their original location, the road was partially shielded by a heap of earth and 
stones. Therefore, on the road 40–45 m from the radioactive sources, the dose 
rate was around 50 µSv/h. Thus, when the dose rate of the first radioactive 
source was measured at a distance of 45 m after it was moved to the road, the 
contribution of the second radioactive source to the total dose rate would have 
been at least 25 mSv/h (approximately 8% of the actual measured dose rate). 
It should be noted that the level of shielding varied along the road. Figure 11 is a 
simplified drawing of the section of the road where the location of the radioactive 
sources and dose rates are shown at various points. 

FIG. 11. Location of the vehicle and radioactive sources.

Figure 11 also shows the location of the vehicle when the radioactive 
sources were moved to the road and placed in the vehicle. Consequently, the 
dose rate of the second radioactive source was measured more precisely. This is 
because the first radioactive source did not influence the measurements taken, 
as it had been placed in the container and its radiation was almost completely 
shielded. 

The measured activity of the radioactive sources was about 40% less than 
the data provided on the source certificate. This decrease in activity was caused 
by radioactive decay. The radioactive sources were produced in 1983, and the 
half-life of strontium is 28 years. After 19 years, the activity of the radioactive 
sources should be 0.519/28 of the original activity. This is equal to 0.62 (i.e. the dose 
rate of a 19 year old source) at the distance of 1 m, which should be 0.62 Sv/h. 
This estimation is in good agreement with the results of the measurements taken.
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The cap of the container into which the radioactive sources were placed 
consisted of four parts. Three of the parts were lead discs 5 cm thick, which were 
placed in the central cylinder of the container, and one part was a lead disc 10 cm 
thick, which covered the top of the container. The cover of the container was 
designed in four pieces due to its weight —it would have weighed over 350 kg if 
the cover had been constructed in one piece.

After placing the radioactive sources in the container, the dose rate on top of 
the open container was 4.6 Sv/h. After positioning the first cap, the dose rate at the 
same point decreased to 60 mSv/h. After the second cap, the dose rate decreased 
to 3.5 mSv/h. After positioning the third cap, it decreased to 500 µSv/h. After the 
final (fourth) cap had been put in place, the dose rate fell to 12–14 µSv/h, which 
was a permissible limit for the transportation of the containers. 

The first cap reduced the dose rate more than 75 times. This indicates that 
in the radiation spectrum of the radioactive source, a large part belongs to the soft 
X radiation, the absorption coefficient of which is much higher than that of the 
high energy gamma quantum. The second cap decreased the dose rate 17 times, 
and the third and fourth 7 and 40 times, respectively.

The dose rate on the lateral surface of the container was less than 1 µSv/h 
and was close to the rate of background radiation. The relatively high dose rate 
on the top of the container was caused by the existence of gaps between the first 
three discs and the inner cylinder, through which the scattered radiation reached 
the last cap.

4.4. LESSONS LEARNED FROM THE RECOVERY OPERATION

The structure of the container lid allowed two people to open and shut it 
without being too close to the open container and the radioactive sources inside. 
When the container was positioned on a level, horizontal surface, this was quite 
easy to accomplish (see (a) in Fig. 12).

However, it was not possible to place the container on a level horizontal 
surface at the recovery site. This caused difficulties when opening and, 
particularly, when closing the container. It was necessary to be located very close 
to the container and to alter the orientation of the lid by hand (see (b) in Fig. 12). 
Consequently, this caused a significant increase in the operational time and 
received dose.

To improve the container, it would have been better to have two eyes on 
the lid, as this would have made it easier to alter the angle of the lid using the rod 
(see (c) in Fig. 12). 
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Both container and lid 
are horizontal. It is easy 
to open and close the 
container.

Container is positioned 
on uneven surface. The 
lid remains horizontal. It 
is necessary to touch the 
lid to alter its orientation.

Two eyes make it 
possible to incline the 
lid remotely by means 
of the auxiliary rod.

FIG. 12.  Different relative orientations of the container and its lid.

In order to prevent or to reduce public concern, the vehicle with the 
container was covered with tarpaulin (i.e. to conceal the contents) during the 
journey to and from the location site. During the recovery operation, there was 
insufficient time to remove the tarpaulin because the weather deteriorated and it 
started to rain. 

After placing the radioactive sources into the container, the dose rate 
remained high both inside and outside the vehicle. This was unexpected and 
was caused by the tarpaulin reflecting and scattering radiation (see Fig. 13). The 
process of closing the container was undertaken in conditions of increased dose 
rates, which could have been avoided had the tarpaulin been removed beforehand.

The individual remote tools with long handles (more than 2 m long) were 
very convenient and comfortable for collecting a radioactive source and pulling 
it along the ground. However, they were not practical for lifting the radioactive 
source to place it on the vehicle platform. The weight of the radioactive sources 
meant that it was necessary to hold the handle of the tools quite near the 
radioactive source (less than 1 m) in order to lift it. To lift the radioactive sources, 
a special tool with handles on opposite sides was used. 
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FIG. 13.  The open container with the radioactive source on the vehicle.

5. BIOLOGICAL DOSIMETRY

5.1. CONVENTIONAL CYTOGENETIC ANALYSIS

Blood samples were taken from Patients 1-DN, 2-MG and 3-MB on 
23 January 2002, in Georgia, for conventional cytogenetic analysis. The samples 
arrived at the Institute for Protection and Nuclear Safety (Institut de protection 
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et de sûreté nucléaire, IPSN)1 on 24 January 2002, and cultures were set up 
the same day at 12:00 and harvested the following day, in accordance with the 
standard procedure.

5.1.1. Technical aspects

Two cytogeneticists scored unstable chromosome aberrations only in the 
complete metaphase of their first division. According to the quality assurance 
programme of the laboratory, at least two technicians checked each dicentric 
chromosome. 

5.1.2. Results

The Poisson distribution of aberrations was tested. The Papworth extended 
U test based upon the mean of variance ratio of the aberration distribution 
quantifies the deviation from Poisson’s Law. When the U test level exceeds 2, 
the radiation exposure may be considered heterogeneous. Applying this to the 
results provided in Table 5, it can be concluded that only Patient 3-MB showed 
a condition of homogeneous irradiation. The results also show that for 
Patients 1-DN and 2-MG, the irradiation was clearly heterogeneous, with 
probably a very strong localized dose.

TABLE 5.  DOSE ESTIMATED FROM THE DICENTRIC YIELD USING 
IPSN GAMMA CALIBRATION CURVE (60CO, 0.5 Gy/MIN DOSE RATE) 
AND DOSE CORRECTION CALCULATED FROM DOLPHIN AND QDR 
MODELS, ASSUMING A SHORT AND HETEROGENEOUS EXPOSURE

Patient Whole body 
dose (Gy)

95% confidence 
interval (Gy)

Dose estimated 
by the Dolphin method 

(Gy)

Dose estimated 
by the Qdr method 

(Gy)

1-DN 3.1 [2.9; 3.3] 5.4 4.9

2-MG 4.4 [3.9; 4.8] 5.7 5.7

3-MB 1.3 [1.1; 1.5] 1.9 2.2

1 Following a merger in February 2002, the IPSN became the Institute for Radiological 
Protection and Nuclear Safety (Institut de radioprotection et de sûreté nucléaire, IRSN).



33

For the dose estimates, a dose effect relationship fitted from the 
chromosome aberrations scoring in blood lymphocytes irradiated in vitro by the 
gamma radiation of 60Co was used, with a dose rate of 0.5 Gy/min. The curve 
coefficients are:

Y D D= + +0 0008 0 0374 0 0549 2. . .  (6)

where Y is the dicentric yield and D is the dose. The whole body dose estimates 
are also provided in Table 5.

Assuming an acute relatively heterogeneous exposure for the three patients, 
it was possible to check the Dolphin and Qdr models in order to improve the 
estimates of the initial dose received by the patients’ irradiated body part.

The IPSN was able to obtain approximate data from the Georgian 
Cytogenetics Laboratory on the dicentric yield and the number of cells. The 
related doses were calculated using the Dolphin method. Table 6 shows the good 
agreement between the results obtained by the IPSN and those obtained by the 
Georgian Cytogenetics Laboratory.

TABLE 6.  SUMMARY OF THE CYTOGENETICS DATA OBTAINED FROM 
THE GEORGIAN CYTOGENETICS LABORATORY

Patient

Georgian Cytogenetics 
Laboratory results

IPSN results

Whole body 
dose (Gy)

Dose estimated by 
Dolphin method (Gy)

Whole body 
dose (Gy)

Dose estimated by 
the Dolphin method (Gy)

1-DN 2.8 3.0 3.1 5.4

2-MG 3.3 4.3 4.4 5.7

3-MB 1.2 2.3 1.3 1.9

Note: The dose estimations were adapted on the basis of the IPSN gamma calibration curve.
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5.2. TRANSLOCATIONS ANALYSIS BY FISH PAINTING

5.2.1. Technical aspects

The IPSN performed translocation analysis by fluorescence in situ 
hybridization (FISH) painting in the peripheral blood lymphocytes, from the 
same blood samples as those used for the dicentrics analyses. The cocktail of 
DNA probes used by the laboratory was specific to the chromosomes 2, 4 and 12, 
which correspond to around 20% of the whole genome.

The two dose effect relationships used by the IPSN were obtained from 
the total and reciprocal translocation scoring from blood samples, both of 
which were vitro gamma irradiated by a 60Co source at a 0.5 Gy/min dose rate. 
All cells bearing either fluorescent complex exchanges or fluorescent unstable 
chromosome aberrations, which can be seen in scored lymphocytes, were 
excluded in order to fit these reference curves.

5.2.2. Results

The scoring of stable chromosome aberrations for the three patients is 
summarized in Table 7, which includes the number of cells scored, the number 
of complex exchanges and translocations, the related dose estimates and the 
95% confidence interval of the data. Table 7 shows the very large proportion of 
cells bearing complex exchanges in Patients 1-DN and 2-MG (a yield of 0.09 for 
Patients 1-DN and 2-MG, compared with a yield of 0.003 for Patient 3-MB). The 
geometry of the radioactive source combined with its activity spectrum might be 
responsible for the presence of these highly damaged cells. However, for all three 
patients, the dose estimated by the reciprocal translocation yield was consistent 
with the dose obtained from the total translocation yield.

The dose estimated from the translocation of the least exposed individual 
(Patient 3-MB) is significantly higher than the dose estimated from the dicentric 
yield, which is in the range of 30% compared with the dose obtained based on 
the translocation. Such a difference could be explained by the one month delay 
between exposure and analysis, as lymphopenia may have developed.

However, the dose estimated from the translocation yield for the more 
exposed individuals (Patients 1-DN and 2-MG) seems underestimated, compared 
with the dose estimated from the dicentric yield. The high number of complex 
exchanges scored in Patients 1-DN and 2-MG could explain this underestimation. 
For Patient 1-DN, for whom the number of complex exchanges was higher, 
when the translocations that could be interpreted from the cells bearing complex 
exchanges are added to the total translocations yield, the dose estimation 
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increases from 2.5 to 2.9 Gy. This is consistent with the 3.1 Gy estimated from 
the dicentric yield.

5.3. LOCAL POPULATION MONITORING

On the basis of the results of the local population monitoring undertaken 
by the Georgian Cytogenetic Laboratory, there was no significant increase of 
chromosome aberration for the 25 individuals who may have come into contact 
with the radioactive sources when living in settlements nearby.

5.4. CONCLUSIONS OF BIOLOGICAL DOSIMETRY

The cytogenetics data — namely, the yields of unstable and stable 
chromosome aberrations scored in peripheral blood lymphocytes of the three 
patients — indicate that the most irradiated patient was Patient 2-MG, followed 
by Patients 1-DN and 3-MB, respectively. In addition, the doses estimated from 
translocations are very close to those estimated from the dicentric yield. In this 
case of acute and heterogeneous exposure, the dose corrections averaged to the 
irradiated part of the body from the Qdr and Dolphin models are less consistent 
compared with the clinical data than the dose obtained from the cytogenetics 
data.

It is the first time it has come to the IPSN’s knowledge that the involvement 
of complex exchanges of cells in the case of accidental overexposure can 
significantly modify the results obtained from translocations data. Further 
investigation of this finding would be useful to improve understanding on the 
formation mechanisms of complex exchanges and scoring of cells for other 
accidental overexposures.

6. OVERVIEW OF THE MEDICAL ASPECTS

Following the exposure on 2 December 2001, all three patients exhibited 
in the first 24 h symptoms of nausea, vomiting, asthenia (weakness), headaches 
and dizziness, followed by cutaneous radiation syndrome (CRS). These early 
clinical manifestations and anamnesis of the patients strongly indicated ARS of a 
haematological type for the three patients. Furthermore, Patient 1-DN developed 
transitory oropharyngeal syndrome.
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6.1. STATUS OF CUTANEOUS RADIATION SYNDROME

It should be noted that the exact date of the initial signs of CRS could 
not be ascertained for all three patients. However, diagnosis was confirmed on 
23 December 2001 by the IHT in T’bilisi.

6.1.1. Patient 1-DN

The localization of the radiological injuries observed on Patient 1-DN are 
shown in Fig. 14. 

FIG. 14.  Localization of the radiological injuries observed on Patient 1-DN.

As shown in Fig. 15, the location of the principal lesion was the left side of 
the posterior thoracic wall. This extensive lesion (approximately 40 cm × 30 cm) 
was almost healed on two thirds of its surface. The periphery of the lesion was 
surrounded by a dry desquamation and hyperpigmentation zone. 

6.1.2. Patient 2-MG

The localization of the radiological injury observed on Patient 2-MG is 
shown in Fig. 16. 
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FIG. 15.  Lesion on the left side of the posterior thoracic wall of Patient 1-DN, 22 January 2002 
(day 51 after exposure and 36 days after the onset of the first clinical signs of CRS).

FIG. 16.  Localization of the radiological injury observed on Patient 2-MG.
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As shown in Fig. 17, the lesion was located on the entire posterior side of 
the thorax, from the waist up to the point of the scapulae. The lesion was a wide, 
moist epidermal denudation of around 8% of the body surface, without signs of 
deep necrosis.

FIG. 17.  Lesion located on the entire posterior side of the thorax, from the waist to the 
scapulae of Patient 2-MG, 22 January 2002 (day 51 after exposure and 36 days after the onset 
of the first clinical signs of CRS).

6.1.3. Patient 3-MB

The localization of the radiological injuries observed on Patient 3-MB are 
shown in Fig. 18. The cutaneous radiological lesion was mild. It was localized 
on his hands, right leg and thigh, as well as both areas of the popliteal fossae 
(regions behind the knees). It consisted only of depigmented areas.

6.2. STATUS OF THE HAEMATOPOIETIC MANIFESTATIONS

At the time of admission to the hospital (day 20 after exposure), the 
blood cell counts of Patients 1-DN and 2-MG showed a severe decrease in the 
granulocytes, lymphocytes and thrombocytes linages. Clinical manifestations 
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were also present that were compatible with ARS of a haematological type, with 
radio induced aplasia. Patient 1-DN showed bleeding from the nose, tongue and 
gums on 27 December 2001 (day 25 after exposure).

The bone marrow impairment showed a spontaneous recovery on 
day 30 after exposure following treatment with a transfusion of platelets for 
Patients 1-DN and 2-MG and a transfusion of an erythrocyte concentrate for 
Patient 1-DN. The regeneration of haematopoiesis was promoted by several 
injections of haematopoietic growth factor granulocyte colony stimulating 
factor (G-CSF) (Neupogen, 300 µg/d). The fast recovery of leucocytes counts 
following the bone marrow stimulation by G-CSF supported assumptions 
of a heterogeneous exposure with areas of bone marrow relatively free from 
irradiation.

6.3. DECISIONS CONCERNING THE MEDICAL MANAGEMENT OF 
THE THREE PATIENTS

On 5 January 2002, an IAEA mission was sent to T’bilisi at the request of 
Georgia. The medical status of the three patients was investigated to formulate 
the optimal strategy for their medical treatment.

Georgian medical staff and the IAEA mission jointly decided that 
Patient 3-MB could remain in Georgia for treatment at the T’bilisi hospital, and 

FIG. 18.  Localization of the radiological injuries observed on Patient 3-MB.
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Patients 1-DN and 2-MG were to be transferred for specialized treatment to the 
Russian Federation and France, respectively.

 — Patient 3-MB was discharged on 23 January 2002.
 — Patient 2-MG was sent home on 18 April 2003.
 — Patient 1-DN died on 13 May 2004.

7. MEDICAL ASSESSMENT AND MANAGEMENT 
OF THE PATIENTS IN GEORGIA

7.1. RESPONSE BY THE LOCAL MEDICAL SERVICE 
AND IDENTIFICATION OF THE ACCIDENT

7.1.1. Patient 1-DN

Patient 1-DN was reported as having been exposed during the night of 
2 December 2001 for approximately 3 h in total. This included 1–1.5 h of close 
contact of his back to the radioactive source while warming himself, as well as 
a few minutes of contact to his hands when examining the radioactive source. 
He started vomiting around 3 h after the initial exposure. He vomited throughout 
the whole night, but then had no symptoms or complaints for about two weeks 
after. He then started to feel a painful burning sensation in his back but noticed 
nothing on his hands. Two days later, he felt a pain in his throat and lost his voice. 
Despite these pathological changes, he did not consult a doctor.

7.1.2. Patient 2-MG

Patient 2-MG was exposed during the night of 2 December 2001 for 
about 10–12 h in total, including about 1–1.5 h of direct contact to his back with 
the radioactive source while warming himself, and also for a maximum of 5 min 
while he curled a wire around the second source. He also vomited during the first 
night.

Patient 2-MG had diarrhoea repeatedly during the next night (day 1 after 
exposure) and also developed a skin reaction of the urticaria type, in the form 
of itching maculae that covered the whole surface of his body. He consulted his 
general physician (day 2 after exposure) but did not mention the “heating device”. 
The general physician (a local doctor) — suspecting intoxication — treated him 
with an intravenous infusion of saline and Haemodes (dextran of low molecular 
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weight for elimination of toxic metabolites via renal clearance) and also gave 
him an intramuscular injection of chloropyramine (Suprastin) to treat the allergy. 
Following the single treatment, his symptoms disappeared in a day. He remained 
asymptomatic for two weeks. On day 13 after exposure, he felt a burning and 
itching feeling in the exposed area of his back. Two days later, a second episode of 
the same type allergic reactions developed and dry desquamation on the exposed 
area of his back appeared. Treatment with chloropyramine proved again to be 
very effective, and the symptoms of urticaria disappeared in a day. However, the 
symptoms of the radiation burn on his back (dry desquamation and severe pain) 
remained and forced him to seek medical advice at the local hospital in Zugdidi 
on 22 December 2001.

7.1.3. Patient 3-MB

Patient 3-MB’s hands were exposed for about 15–20 min in total while 
he held the radioactive sources and moved them to the rock to observe them. 
His right leg and thigh, as well as both popliteal fossa (regions behind the 
knees) were exposed for approximately 2 h while he was sitting on the rock 
between 18:00 and 21:00, at around 0.5–1 m from the radioactive sources. He 
was the last of the three patients to begin vomiting, and only stopped vomiting 
early the next morning.

Erythema, a burning feeling and oedema of his right hand appeared one 
week later. On 8 December 2001 (day 6 after exposure), he could not close 
the fingers of his hand, and the skin was swollen and flattened. The terminal 
phalanges of all five fingers turned numb, and dry desquamation of the right hand 
appeared three to four days later. A feeling of severe weakness lasted for three 
weeks after the exposure. However, Patient 3-MB did not seek medical advice.

When he learned from Patients 1-DN and 2-MG of the skin lesions on their 
backs, his wife and the brother of Patient 2-MG reported the strange disease to 
a local police officer, who advised them to go to the local hospital and request 
medical help. All three were hospitalized on the same day, 22 December 2001 
(day 20 after exposure) in Zugdidi, where they received their first medical aid. 
They were treated with an infusion of saline solution and the topical treatment of 
wounds, which included sterile dressing and ointments with antibiotics. Based on 
the anamnesis and clinical picture, all three patients were diagnosed with ARS, 
and the case was reported to the Emergency Medical Center in T’bilisi, which 
requested the transfer of the patients to the IHT in T’bilisi.
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7.2. TREATMENT AT THE INSTITUTE OF HEMATOLOGY 
AND TRANSFUSIOLOGY, T’BILISI 

7.2.1. Patient 1-DN

7.2.1.1. Dynamics of medical status and haematopoietic syndrome

Patient 1-DN was transferred to the IHT on 23 December 2001 (day 21 after 
exposure). Following admission, he complained of a feeling of severe weakness 
and a very severe pain in the throat (he was unable to eat and to swallow saliva). 
He had a high temperature (40°C), very low blood pressure (70/30 mmHg), a dry 
tongue and expressed hyperaemia (redness) of the neck, mouth and throat. 

Peripheral blood counts were conducted for the first time since the exposure. 
The dynamics of the haematological parameters are presented in Figs 19–22. 
Figure 19 shows a low level in leucocytes until day 23 after exposure. The 
leucocyte level then began to increase following the bone marrow stimulation 
using Neupogen (300 µg/d) from 24 December to 30 December 2001, when the 
leucocytes value subsequently reached a safe level. 

FIG. 19.  Leucocyte, neutrophil and lymphocyte dynamics of Patient 1-DN.

Figure 20 shows that Patient 1-DN’s lymphocytes could not be counted 
initially owing to severe lymphopenia. However, a slow incremental improvement 
was observed. The lymphocytes did not reach the lower limit of normal range in 
two weeks, as G-CSF stimulation led to a fast increase of granulocytes.
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FIG. 20.  Lymphocyte dynamics of Patient 1-DN.

Figure 21 shows that Patient 1-DN had severe thrombopenia, which began 
to improve on day 31 after exposure following the use of thrombomass, and 
returned to normal values on day 43 after exposure. 

FIG. 21.  Thrombocyte dynamics of Patient 1-DN. 
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Figure 22 shows that erythrocytes fell below the normal range (4 × 1012/L) 
following day 21 after exposure. The results presented in Fig. 22 also show that 
following day 21 after exposure, moderate to severe radio induced anaemia 
evolved in Patient 1-DN, which required treatment with erythromass transfusions. 

FIG. 22.  Erythrocyte and haemoglobin dynamics of Patient 1-DN. 

A bone marrow aspirate was taken from the sternum on 23 December 2001 
(day 21 after exposure). Table 8 presents the results of the cytomorphological 
analysis performed on the bone marrow. The results showed very low cellularity, 
with only 200 cells in four smears, while the normal range is over 400 cells per 
smear. Table 8 shows very low cellularity, a decreased number of the immature 
cell forms of myeloid precursors and a higher counting of the mature forms of 
cells for Patient 1-DN on day 22 after exposure. Table 8 also shows the trend of 
returning to normal cellularity on day 66 after exposure.

To prevent severe infection and sepsis in this case of expressed 
agranulocytosis, Patient 1-DN was placed in a single room and a wide range 
of antibiotics was used in large dosages from the day of admission: ceftriaxone 
(Rocephin) 2.0 g twice a day and gentamicin 80 mg three times a day 
intravenously.
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TABLE 8.  BONE MARROW CYTOMORPHOLOGICAL ANALYSIS: 
PATIENT 1-DN

24 Dec. 2001 6 Feb. 2002

Days after exposure 22 66

Cell type (% of 400 cells counted)

Myeloblasts 0.5 0.5

Neutrofils —a —a

Promyelocytes 1.5 3.3

Myelocytes 3.5 11.0

Metamyelocytes 2.5 12.5

Band 4.0 5.3

Segmented 6.5 5.0

Eosinophils 1.0 5.5

Basophils 0.0 0.0

Lymphocytes 50.0 2.3

Monocytes 2.5 2.0

Mitotic figures within granulopoiesis 0.5 0.8

Reticulocytes 2.0 0.0

Plasmocytes 15.5 2.3

Macrophages 1.5 0.3

Erythroblasts
Basophil 2.5 5.0
Polichromatophil 3.5 26.5
Oxyphil 2.0 16.5

Mitotic figures within erythropoiesis 0.5 0.5

Megakaryocytes 0.0 1.0

Comments Very low cellularity Normal cellularity

a —: data not available.
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On the following day (24 December 2001), Patient 1-DN’s temperature 
dropped significantly owing to the treatment, and by 25 December, it had returned 
to normal. Gentamicin was thus withdrawn. Ceftriaxone was reduced to 1.0 g/d of 
prophylactic dosage following a weekly treatment (30 December 2001 onwards). 
Saline, rheopolyglucin (dextran), Aminosol (amino acids and minerals) and 
HAES-steril (dextran) infusions were used from the beginning of hospitalization 
for parenteral nutrition.

Despite the transfusion of four units of thrombocyte concentrate on 
25 December 2001, bleeding was observed on 27 December from the nose, 
tongue, gums and gingival area (see Fig. 23). A repeated treatment of four units of 
thrombocyte concentrate administered on 27 and 28 December led to a cessation 
of all of these types of bleeding. 

FIG. 23.  Fissures and blood clots on the tongue of Patient 1-DN, 27 December 2001 (day 25 
after exposure).

Moderate anaemia developed on 28 December 2001, which was 
immediately treated with the transfusion of an erythrocyte concentrate. However, 
due to radiogenic erythropenia, a lowering of the haemoglobin level was observed 
for three more days, despite the repeat of daily transfusions. Recovery followed 
the fourth transfusion of erythrocyte concentrate, on 31 December.
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To prevent mycotic (fungal) infection, fluconazole (150 mg/d orally) 
was provided on 28 December 2001 and 4 January 2002. Neither viral, fungal 
infections nor general bacterial infection developed in Patient 1-DN when 
checked on 7 January.

7.2.1.2. Dynamics and treatment of local radiation injuries

The hands of Patient 1-DN showed signs of dry desquamation, which was 
more pronounced on the palm surface (see Fig. 24). There were two large areas 
of moist desquamation on his back, one was approximately 17 cm × 18 cm on the 
left shoulder and the second was a round area (14 cm in diameter) on the left side 
of the lower part of the thoracic wall. Both areas were covered with a yellowish 
fibrin layer and surrounded with a 2 cm wide hyperpigmented zone (see Fig. 25). 

FIG. 24.  Erythema on the palms of Patient 1-DN, 29 December 2001 (day 27 after exposure).

FIG. 25.  Erythema and dry desquamation on the back of Patient 1-DN, 29 December 2001 
(day 27 after exposure).
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At the thoracic vertebra (T12) and upper lumbar vertebra (L1), a small 
depigmented area (2 cm in diameter) was observed. It resembled paper and was 
made of very thin, new skin that covered a small area of moist desquamation. In 
this small area, spontaneous epithelization had already taken place. Cultivation 
of a wound smear taken on 26 December 2001 revealed one week later a 
Staphylococcus aureus infection resistant to many antibiotics but sensitive to 
vancomycin. However, this antibiotic was not available at the IHT.

The local treatment of radiation injuries consisted of the following: 
cleaning with antiseptic solutions (potassium permanganate and hydrogen 
peroxide); and covering wounds to prevent local infection with Olasolum spray 
(containing antibiotic levomycetin, boric acid and anesthesin), panthenol spray 
(as a biostimulator) as well as Solcoseryl gel (to enhance epithelization). 

On 5 January 2002 (day 34 after exposure), infiltration, hyperaemia and 
inflammatory oedema developed around the flat radiation ulcer located on the 
upper area of Patient 1-DN’s back (see Fig. 26). A profuse, serous purulent 
discharge appeared that was light brown and odourless, and his pain increased.

FIG. 26.  A flat ulcer (upper) and dry desquamation (lower) on the back of Patient 1-DN, 
5 January 2002 (day 34 after exposure).

On 6 and 7 January 2002, slight dry desquamation of both palms and 
desquamation with erosions and slight maceration of the large lesions on the back 
were observed. The centres of these radiation induced lesions (17 cm and 14 cm 
in diameter) were coated with fibrin. 
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It could be concluded for Patient 1-DN’s general status that the treatment 
provided led to a significant improvement of his condition, which was 
expressed in the normalization of haemodynamics and blood counts, except 
for the lymphocytes and slight anaemia. An urgent change of antibiotics for 
local treatment was required (patient was given Vancocin, active ingredient 
vancomycin), as well as the provision of sterile conditions for surgical treatment 
of the wound and for stimulation of its recovery. The prognosis for Patient 1-DN 
was good, providing the wound remained aseptic, and he remained under 
observation following surgical treatment. There was a need for reverse isolation. 
Therefore, a decision was made to remove relatives from the ward — except for 
his wife, who helped with regular medical care and full time observation. 

From 12 January 2002 (day 41 after exposure), two ulcers began to merge 
(see Fig. 27). The area of pain increased.

FIG. 27.  Two ulcers on Patient 1-DN, 12 January 2002 (day 41 after exposure).

A complex therapy for the local radiation injuries included PhagoBioDerm, 
panthenol and olasolum in aerosols. On 13 January 2002 (day 42 after exposure), 
the upper ulcer was covered with PhagoBioDerm (see Fig. 28). 

During the process of wound dressing, only the gauze bandages were 
changed. The areas covered with the PhagoBioDerm had been irrigated with a 
hypertonic solution of sodium bicarbonate 2–3 times a day. The PhagoBioDerm 
biodegraded after ten days. The upper and lower areas of the lesion had been 
covered with Actosol, panthenol and olasolum (see Fig. 29).
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FIG. 28.  Upper ulcer on Patient 1-DN, covered with PhagoBioDerm, 13 January 2002 
(day 42 after exposure).

FIG. 29.  Ulcers on Patient 1-DN, covered with PhagoBioDerm and panthenol.

On 5 February 2002 (day 65 after exposure), the lower lesion spontaneously 
healed with small foci of superficial erosion, while the upper lesion became 
severely infected during February (see Fig. 30).

Figure 31 shows the lower ulcer completely closed on 10 February 2002 
(day 70 after exposure). The upper ulcer reduced in diameter and was covered 
with a fibrin layer 2–3 mm thick. A marginal epithelization was discernible under 
the fibrin crust.
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FIG. 30.  Local radiation injury on the back of Patient 1-DN, 5 February 2002 (day 65 after 
exposure).

FIG. 31.  Upper ulcer on Patient 1-DN, covered with fibrin layer, lower ulcer with 
epithelization, 10 February 2002 (day 70 after exposure).
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On 21 February 2002 (day 81 after exposure), Patient 1-DN was transferred 
to the Institute of Biophysics of the Burnasyan Federal Medical Biophysical 
Center, in Moscow, the Russian Federation, for further surgical treatment.

7.2.1.3. Laboratory analysis results

The results of the laboratory analysis are presented in Tables 9–13. Table 9 
presents the serum immunoglobulins of Patient 1-DN on days 22 and 68 after 
exposure.

TABLE 9.  SERUM IMMUNOGLOBULINS: PATIENT 1-DN

24 Dec. 2001 8 Feb. 2002 Normal range

Days after exposure 22 68

Serum immunoglobulin (g/L)

IgG 7.0 11.0 12

IgA 3.5 1.9 2.4

IgM 1.8 0.9 1

Table 10 presents the lymphocytes of Patient 1-DN on days 22 and 66 after 
exposure. It shows that on 24 December 2001 (day 22 after exposure):

 — T lymphocytes were reduced to 26% (normal range 45–50%).
 — T active lymphocytes were reduced to 4% (normal range 17–25%).
 — T helper lymphocytes were reduced to 20% (normal range 35–40%).
 — T suppressor lymphocytes were reduced to 7% (normal range 10–15%).
 — B lymphocytes remained at the lower level of the normal range (normal 
range 11–20%).

On 6 February 2002, (day 66 after exposure), the percentile distribution 
showed an improvement in T active lymphocytes and normal values in the 
B lymphocytes (however, with no change). The other series maintained values 
below the normal range. 



54

TABLE 10.  LYMPHOCYTES: PATIENT 1-DN

24 Dec. 2001 6 Feb. 2002 Normal range

Days after exposure 22 66

Lymphocyte (%)

T 26 30 45–50

T active 4 17 17–25

T helper 20 25 35–40

T suppressor 7 6 10–15

B 11 11 11–20

Table 11 presents the whole protein of blood and protein fractions of 
Patient 1-DN on days 22, 32, 45 and 66 after exposure. It shows low levels of 
albumins between days 22 and 66 after exposure, which is compatible with 
Patient 1-DN’s high metabolic requirements and indicates a possible impaired 
nutritional status. 

TABLE 11.  WHOLE PROTEIN OF BLOOD AND PROTEIN FRACTIONS: 
PATIENT 1-DN

24 Dec. 2001 3 Jan. 2002 16 Jan. 2002 6 Feb. 2002 Normal 
range

Days after exposure 22 32 45 66

Whole protein (g/L) 99.9 65.5 65.5 72.0 67–85

Albumins (%) 44.5 48.9 42.0 42.5 50.1–59

Globulins (%) 55.5 51.1 42.5 57.5 49.9–41

α1 (%) 5.8 5.5 57.5 6.5 2.5–5

α2 (%) 10.5 13.3 11.5 13.4 7.2–10.5

Β (%) 14.2 14.9 15.2 15.5 9.2–13.8

γ (%) 25.0 17.4 24.6 22.1 15.8–22.2

Coeff. A/G 0.8 1.0 0.7 0.7 1–1.4
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Table 12 presents the kidney function tests of Patient 1-DN on days 22, 26 
and 32 after exposure. It shows that the serum creatinine level was elevated on 
day 26 after exposure, at 250 µmol/L (normal range 61–115 µmol/L). The results 
suggested acute kidney failure during the first month of the his evolution. On 
day 32 after exposure, the values were compatible with a functional recovery 
process.

TABLE 12.  KIDNEY FUNCTION TESTS: PATIENT 1-DN

24 Dec. 2001 28 Dec. 2001 3 Jan. 2002 Normal range

Days after exposure 22 26 32

Urea (µmol/L) 18.31 20.8 8.32 2.5–8.32

Creatinine (µmol/L) 212.4 250 123.9 61–115

Table 13 presents the coagulogram results of Patient 1-DN on days 22, 32 
and 45 after exposure. It shows the evolution of parameters in the coagulogram. 
On day 45 after exposure, almost all parameters were normal, with the exception 
of the blood fibrinolytic activity. The prothrombin index suggested a preserved 
liver function during the entire period.

TABLE 13.  COAGULOGRAM: PATIENT 1-DN (cont.)

24 Dec. 2001 3 Jan. 2002 16 Jan. 2002 Normal range

Days after exposure 22 32 45

Clotting time (s) 17 8 10 5–10

Recalcification time (min) 220 115 120 90–160

Prothrombin index (%) 80 90 80 80–100

Thrombin time (min) 28 32 31 29–39

Fibrinogen concentration (g/L) 6.5 3 2.5 2–4
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TABLE 13.  COAGULOGRAM: PATIENT 1-DN (cont.)

24 Dec. 2001 3 Jan. 2002 16 Jan. 2002 Normal range

B-fibrinogen (++) (−) (−) (−)

Paracoagulation tests (+) (−) (−) (−)

Blood fibrinolytic activity (%) 9 5 5 14–16

7.2.1.4. Results of further medical examinations

The liver function tests were without pathological changes, and there were 
no significant changes indicated from the results of the electrocardiography 
(ECG). A chest radiography was performed on 8 January 2002, which showed 
the lung to be reticular and enhanced, and the root of the right lung was deformed 
and dilated (see Fig. 32).

On 12 February 2002, an additional chest radiography was performed, but 
there was no observable improvement (see Fig. 33).

FIG. 32.  Chest radiography of Patient 1-DN, 8 January 2002 (day 37 after exposure).
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FIG. 33.  Chest radiography of Patient 1-DN, 12 February 2002 (day 72 after exposure).

An ultrasound examination of the abdomen showed:

(a) Liver was enlarged at 2–3 cm below the costal margin on the 
medio-clavicular line:

 — Contours were sharp and regular;
 — Structure was small and granular;
 — Echogenicity was increased in a non-uniform way;
 — Vascular image was poor.

(b) No other organs showed pathological changes.

Sample swabs for bacterial analysis were taken from the ulcers on 
Patient 1-DN’s local radiation injuries on his back. The results of this analysis are 
presented in Table 14.

TABLE 14.  BACTERIOLOGICAL ANALYSIS OF SWABS TAKEN FROM 
LOCAL RADIATION INJURIES: PATIENT 1-DN

Date Result Sensitive to

27 Dec. 2001 S. epidermidis Gentamicin
Doxycycline

Vancocin

10 Jan. 2002 Sterile None

16 Jan. 2002 Sterile None

24 Jan. 2002 Sterile None
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The IHT did not have equipment such as a computed tomography (CT) 
scanner, a magnetic resonance imaging (MRI) scanner, thermography tools or 
high frequency ultrasound devices (20 MHz) at the time of the accident, which 
might have been helpful for examining the three patients.

7.2.2. Patient 2-MG

In light of the anamnesis and clinical manifestations of Patient 2-MG, 
a diagnosis of ARS was considered at the time of admission.

7.2.2.1. Dynamics of medical status and haematopoietic syndrome

Patient 2-MG had herpes simplex following admission on 
23 December 2001, which was successfully treated with acyclovir using both 
oral and local ointment over a period of five days (see Fig. 34). 

Patient 2-MG’s haematological parameters were not as severely suppressed 
as Patient 1-DN following admission. Three doses of Neupogen led to the 
normalization of Patient 2-MG’s leucocytes (see Fig. 35), which can also be 
associated with an improvement of lymphocytes during the same four day period 
(see Fig. 36). 

As Patient 2-MG’s temperature remained subfebrile, measuring 37.6°C on 
7 January 2002, there was an urgent need to change to antibiotics that provided 
for a wide spectrum in effectiveness (ciprofloxacin and doxycycline, combined 
with vancomycin).

FIG. 34.  Herpetic eruption of Patient 2-MG, 23 December 2001 (day 21 after exposure).
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FIG. 35.  Leucocyte, neutrophil and lymphocyte dynamics of Patient 2-MG.

FIG. 36.  Lymphocyte dynamics of Patient 2-MG.

A single transfusion of thrombocyte concentrate also allowed Patient 2-MG 
to recover normal platelet values (see Figs 37 and 38). The erythrocytes 
of Patient 2-MG remained just below the lower limit until 8 January 2002 
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(see Fig. 38). The low levels of lymphocytes, platelets and erythrocytes were 
compatible with ARS of a haematological type with impaired bone marrow 
function.

FIG. 37.  Thrombocyte dynamics of Patient 2-MG.

FIG. 38.  Erythrocyte and haemoglobin dynamics of Patient 2-MG.
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Table 15 presents the results of Patient 2-MG’s bone marrow 
cytomorphological analysis. It shows the response of the bone marrow to the 
radiation injury. On 24 December 2001 (day 22 after exposure), an increase 
was observed in the plasmocytes and reticulocytes with low cellularity. On 
6 February 2002 (day 66 after exposure), all the values tended to normal 
cellularity, with the exception of the lymphocytes, which had markedly 
diminished.

TABLE 15.  BONE MARROW CYTOMORPHOLOGICAL ANALYSIS: 
PATIENT 2-MG (cont.)

24 Dec. 2001 6 Feb. 2002

Days after exposure 22 66

Cell type (% of 400 cells counted)

Myeloblasts 3 0.5

Neutrofils —a —a

Promyelocytes 10 2

Myelocytes 10 8.5

Metamyelocytes 5 9.75

Band 5.75 16.5

Segmented 7 19.25

Eosinophils 1.5 5

Basophils 0 0

Lymphocytes 10 4.25

Monocytes 2 2.25

Mitotic figures within granulopoiesis 2 0.75

Reticulocytes 5 1

Plasmocytes 6.25 1.25

Macrophages 3 0.5
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TABLE 15.  BONE MARROW CYTOMORPHOLOGICAL ANALYSIS: 
PATIENT 2-MG (cont.)

24 Dec. 2001 6 Feb. 2002

Erythroblasts
Basophil 6.25 3
Polichromatophil 14.25 11.75
Oxyphil 7 12.5

Mitotic figures within erythropoiesis 1.5 0.5

Megakaryocytes 0.25 0.75

Comments Low cellularity Normal cellularity

a —: data not available.

7.2.2.2. Dynamics and treatment of local radiation injuries

Patient 2-MG’s clinical picture was very similar to Patient 1-DN. S. aureus 
was defined by the large superficial radiation injury on his back (38 cm × 35 cm 
and approximately 9% of the whole body surface). The large moist desquamation 
was without spots of deep ulceration or necrosis. The injury was a huge flat ulcer 
with infiltration, hyperaemia and inflammation of the oedema. In the left lateral 
and central areas, the injury was deeper with bleeding of the capillaries. A large 
amount of serous purulent discharge appeared that was light brown and odourless 
(see Fig. 39).

Patient 2-MG’s infection was sensitive to many antibiotics that were used, 
including ceftriaxone (Rocephin). He was in permanent pain, which could only be 
reduced to a certain extent by narcotics. There was no significant epithelization, 
and there were multiple foci of erosive lesions with a superficial bleeding of the 
wound.

As a result of the general and local conservative treatment given in stages, 
the infiltration, hyperaemia and inflammatory oedema of the surrounding areas 
decreased, pain abated and the discharge diminished and changed characteristics 
— it became yellow and appeared more severe. The main part of the injury was 
covered with a fibrin layer. Small areas of epithelization also appeared.

The prognosis for Patient 2-MG was satisfactory, and following appropriate 
surgical treatment, a full recovery was feasible. However, the antiseptic and 
aseptic conditions of the dressings and surgical procedures needed to be observed. 
Reverse isolation and removal of relatives from the ward were required (except 
for his daughter, who helped with regular medical care and full time observation). 



63

On 21 February 2002, Patient 2-MG was taken to the Percy Military Training 
Hospital, in Paris, France, for further medical treatment.

7.2.2.3. Laboratory analysis results

The results of the laboratory analysis are presented in Tables 16–18. 
Table 16 presents the serum immunoglobulins of Patient 2-MG on days 22 
and 68 after exposure.

TABLE 16.  SERUM IMMUNOGLOBULINS: PATIENT 2-MG

24 Dec. 2001 8 Feb. 2002 Normal range

Days after exposure 22 68

Serum immunoglobulin (g/L)

IgG 12.0 8.8 12

IgA 1.7 1.8 2.4

IgM 1.0 0.6 1

FIG. 39.  Flat ulcer on the back of Patient 2-MG, 29 December 2001 (day 27 after exposure).
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Table 17 presents the lymphocytes of Patient 2-MG on days 22 and 66 after 
exposure. On 6 February 2002 (day 66 after exposure) the values tended to the 
normal values, with the exception of the T suppressor lymphocytes.

TABLE 17.  LYMPHOCYTES: PATIENT 2-MG

24 Dec. 2001 6 Feb. 2002 Normal range

Days after exposure 22 66

Lymphocyte (%)

T 28 47 45–50

T active 19 43 17–25

T helper 22 39 35–40

T suppressor 8 9 10–15

B 12 10 11–20

Table 18 presents the whole protein of blood and protein fractions of 
Patient 2-MG on days 22, 32, 45 and 66 after exposure. The table shows a 
tendency to low levels of albumins between days 22 and 66 after exposure, which 
is compatible with his high metabolic requirements and indicated a possible 
impaired nutritional status. The other proteins had normal values on day 66 after 
exposure.

7.2.2.4. Results of further medical examinations.

The liver and kidney function tests revealed no pathological changes and, 
following an ECG, there were also no significant changes. A chest radiography 
showed that the lung field was reticular and enhanced. An ultrasound examination 
of the abdomen showed that:

(a) Liver was enlarged at 1–2 cm below the costal margin on the 
medio-clavicular line:

 — Contours were sharp and regular;
 — Structure was small and granular;
 — Echogenicity was normal;
 — Vascular image was normal.

(b) Spleen was enlarged at 1–2 cm below the costal margin; 
(c) No other organs showed pathological changes.
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TABLE 18.  WHOLE PROTEIN OF BLOOD AND PROTEIN FRACTIONS: 
PATIENT 2-MG

24 Dec. 2001 3 Jan. 2002 16 Jan. 2002 6 Feb. 2002 Normal 
range

Days after exposure 22 32 45 66

Whole protein (g/L) 71.2 65.1 71.6 68.0 67–85

Albumins (%) 48.3 58.0 45.3 43.5 50.1–59

Globulins (%) 51.7 42.0 54.7 56.5 49.9–41

α1 (%) 5.2 2.0 6.5 6.3 2.5–5

α2 (%) 12.0 6.7 13.0 14.8 7.2–10.5

β (%) 10.5 19.1 11.5 15.2 9.2–13.8

γ (%) 24.0 14.2 23.7 20.2 15.8–22.2

Coeff. A/G 0.9 1.4 0.8 0.8 1–1.4

Sample swabs for bacterial analysis were taken from the ulcers on 
Patient 2-MG’s local radiation injuries on his back (see Table 19).

TABLE 19.  BACTERIOLOGICAL ANALYSIS OF SWABS TAKEN FROM 
LOCAL RADIATION INJURIES: PATIENT 2-MG

Date Result Sensitive to

27 Dec. 2001 S. aureus Levomycetin
Oxacillin

Gentamicin
Erythromycin

Claforan
Doxycycline
Ciprofloxacin

Vancocin

10 Jan. 2002 S. aureus Gentamicin
Doxycycline

Vancocin

16 Jan. 2002 S. aureus Gentamicin
Doxycycline

Vancocin

24 Jan. 2002 Sterile None
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7.2.3. Patient 3-MB

7.2.3.1. Dynamics of medical status and haematopoietic syndrome

The exposure of Patient 3-MB was significantly less severe than the 
other two patients. Consequently, his clinical status was less serious and his 
haematological signs were milder. He periodically felt a burning sensation in his 
hands and legs. Panthenol ointment was used to help mitigate this. 

A decision to administer two single doses of Neupogen given on 24 and 
29 December 2001 was not based on the haematological indicators shown 
in Fig. 40. Instead, the decision was due to other reasons: following a similar 
procedure for treatment used on three individuals hospitalized at the same 
institute and according to information on the treatment used in Germany for 
patients from the Lilo radiological accident, the experimental use of Neupogen 
proved to be effective for the stimulation of epithelium reparation. This sporadic 
clinical observation is also supported by data in the scientific literature [3]. 

Figure 40 shows two peaks of leucocytes related to the administration of 
Neupogen. Between 2 and 21 January 2002 (days 31–50 after exposure), the 
curve shows that the leucocytes values tended to be slightly lower than normal.

FIG. 40.  Leucocyte, neutrophil and lymphocyte dynamics of Patient 3-MB.
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Patient 3-MB’s lymphocyte counts quickly recovered (see Fig. 41), but his 
platelets and red blood cells did not change significantly (see Figs 42 and 43). 
The lymphocyte curves shown in Fig. 41 were compatible with leucopenia during 
the entire period. 

FIG. 41.  Lymphocyte dynamics of Patient 3-MB.

FIG. 42.  Thrombocyte dynamics of Patient 3-MB.
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Figure 42 shows a normal curve of thrombocytes for Patient 3-MB from 
25 December 2001 (day 23 after exposure).

Figure 43 shows the erythrocytes and haemoglobin curves for Patient 3-MB, 
which did not decrease as markedly as for the other two patients. This was 
consistent with the lower estimated absorbed dose for Patient 3-MB, since the 
curves remained near the lower normal limit.

FIG. 43.  Erythrocyte and haemoglobin dynamics of Patient 3-MB.

Table 20 presents the results of Patient 3-MB’s bone marrow 
cytomorphological analysis. This analysis did not identify large changes, 
as was the case of the analyses conducted for Patients 1-DN and 2-MG. By 
6 February 2002 (day 66 after exposure), most of the parameters were in the 
normal range for Patient 3-MB.
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TABLE 20.  BONE MARROW CYTOMORPHOLOGICAL ANALYSIS: 
PATIENT 3-MB

24 Dec. 2001 6 Feb. 2002

Days after exposure 22 66

Cell type (% of 400 cells counted)

Myeloblasts 1.00 0.25

Neutrofils —a —a

Promyelocytes 0.00 0.50

Myelocytes 6.25 15.00

Metamyelocytes 10.25 15.25

Band 0.50 10.50

Segmented 27.25 14.50

Eosinophils 5.00 2.75

Basophils 0.00 0.00

Lymphocytes 9.00 10.00

Monocytes 2.50 0.00

Mitotic figures within granulopoiesis 0.00 0.50

Reticulocytes 0.25 0.00

Plasmocytes 0.00 1.25

Macrophages 0.75 0.50

Erythroblasts
Basophil 6.25 4.50
Polichromatophil 12.25 14.50
Oxyphil 0.25 8.75

Mitotic figures within erythropoiesis 0.25 0.75

Megakaryocytes 0.25 0.50

Comments Low cellularity Normal cellularity

a —: data not available.
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7.2.3.2. Dynamics and treatment of local radiation injuries

Patient 3-MB complained of discomfort in his fingers and a darkening and 
desquamation of his hands. On the lateral surface of the middle third of the right 
thigh was an erythema (3 cm in diameter, see Fig. 44). The erythema was marked 
also in the subpopliteal areas. The hyperaemia, oedema and dry desquamation 
were visible on the palms (see Fig. 45). The erythema on the thigh disappeared 
without additional medical treatment. As a result of the conservative local 
treatment using glycerine and vitamin A and E ointment, the skin of the palms 
normalized.

The prognosis for Patient 3-MB was very good, and recovery was expected 
without surgical treatment. On 23 January 2002, he was discharged from 
the hospital and monitored as an outpatient. His general condition remained 
satisfactory. 

FIG. 44.  Erythema on the right thigh of Patient 3-MB (date not known).
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FIG. 45.  Hyperaemia, oedema and dry desquamation on the palms of Patient 3-MB (date not 
known).

Table 21 presents the monthly laboratory results of his peripheral blood 
counts in dynamics over the follow-up period of ten months. The haematological 
indices have mainly remained within the normal or subnormal ranges. For the 
purpose of preventing immunodeficiency, he was periodically treated with a 
transfusion of Ig VENA intravenously using a complex of immunoglobulins: 
IgG1, IgG2, IgG3, IgG4 and IgA and multivitamins. The dynamics were positive. 
However, Patient 3-MB’s psychological status needed particular attention. 
He suffered from depression, high anxiety, radiophobia (fear of radiation) and 
thanatophobia (fear of death or dying). For this reason, he was administered 
tranquilizers diazepam, carbamazepine and azaleptin, under the supervision of a 
psychiatrist.

7.2.3.3. Laboratory analysis results

The results of the laboratory analysis conducted for Patient 3-MB are 
presented in Tables 22–24. Table 22 presents the serum immunoglobulins, 
Table 23 presents the lymphocytes and Table 24 presents the whole protein of 
blood and protein fractions.
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TABLE 24.  WHOLE PROTEIN OF BLOOD AND PROTEIN FRACTIONS: 
PATIENT 3-MB

24 Dec. 2001 3 Jan. 2002 16 Jan. 2002 Normal range

Days after exposure 22 32 45

Whole protein (g/L) 76.3 81.8 82.5 67–85

Albumins (%) 45.2 60.1 44.5 50.1–59

Globulins (%) 54.8 39.9 55.8 41–49.9

α1 (%) 11.3 5 5.5 2.5–5

α2 (%) 15.6 6.7 12.3 7.2–10.5

β (%) 21.4 7.7 15.8 9.2–13.8

γ (%) 21.4 20.5 22.2 15.8–22.2

Coeff. A/G 0.8 1.5 0.75 1–1.4

7.2.3.4. Results of further medical examinations

The liver and kidney function tests revealed no pathological changes in 
Patient 3-MB. The results of the ECG and the chest radiography showed that 
there were no significant changes. 

The results of the ultrasound examination of the abdomen showed:

(a) Liver was enlarged at 2–3 cm below the costal margin on the 
medio-clavicular line:

 — Contours were sharp and regular;
 — Structure was normal;
 — Echogenicity was normal;
 — Vascular image was normal. 

(b) Spleen was enlarged at 1–2 cm below the costal margin.
(c) No other organs showed pathological changes.
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7.3. SUMMARY OF THE TREATMENT PROVIDED IN GEORGIA

Figure 46 presents the complex treatment that was provided to the three 
patients, which was based on the following principles:

 — Reduction of the haematological and oropharyngeal syndromes;
 — Decrease of the severity and duration of neutropenia by growth factors and 
antimicrobial drugs (to treat or prevent infection);

 — Active infusive therapy using blood substitutes;
 — Improvement of microcirculation;
 — Desensitization;
 — Vitamin therapy;
 — Immunostimulative therapy;
 — Topical treatment of local radiation injuries;
 — Psychotherapy.

FIG. 46.  Main principles underlying patient treatment. 
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7.3.1. Treatment for haematological syndrome

Cytokines therapy (G-CSF), Neupogen (filgrastim) and transfusions of 
haemocomponents were performed. 

Patient 1-DN was treated with:

 — Neupogen 300 µg/d (24–30 December 2001);
 — Packed red blood cells 300 ml/d (five transfusions);
 — Concentrates of platelets 4 doses/d (three transfusions).

Patient 2-MG was treated with:

 — Neupogen 300 µg/d (24–27 December 2001).

Patient 3-MB was treated with:

 — Neupogen 300 µg/d (27 December 2001). Leucopenia was not severe, but 
after episodic increases of white blood cells, it developed again, which is 
why Neupogen was used.

7.3.2. Intensive therapy

Blood substitutes were used for different purposes (anti-shock effect, 
parenteral nutrition, correction of albumin imbalance and improvement of 
microcirculation), with the following solutions:

 — NaCl 0.9%;
 — Ringer’s lactate;
 — Glucose 5%;
 — Reopoliglyukin (dextran);
 — HAES-steril 6%;
 — Aminosol;
 — Albumin 20%.

Patients 1-DN and 2-MG were treated with infusive therapy equally, 
whereas Patient 3-MB was treated with less intensity and for the first ten days 
only.
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7.3.3. Treatment for infections

The treatment (or prevention) of neutropenia fever was provided using the 
following antimicrobial drugs:

 — Ceftriaxone sodium (Rocephin) 2 g × 2 + gentamicin sulphate 80 mg × 3 
(5 days);

 — Ceftriaxone sodium (Rocephin) 1 g × 2 (10 days);
 — Doxycycline 100 mg + ciprofloxacin 500 mg × 2 (14 days);
 — Ampicillin and sulbactam (Ampicid) 1 g × 3 (15 days);
 — Vancomycin (Vancocin) 1 g × 2 (10 days).

Patients 1-DN and 2-MG were generally given antibiotic therapy on 
the same schedule, and Patient 3-MB was injected with a prophylactic dose 
of Rocephin during the first week only. For the purpose of preventing fungal 
infection, the three patients were given Diflucan and fluconazole 150 mg a 
week. For the clinically expressed herpes simplex virus, Patient 2-MG was 
given acyclovir 1000 mg/d for five days and an ointment applied locally on the 
eruption.

7.3.4. Treatment for oropharyngeal syndrome

For a reduction of oropharyngeal syndrome, Patient 1-DN received together 
with general treatment:

 — Nasal pharyngeal inhalation of Tantum Verde;
 — Sanation with Iodinol solution.

7.3.5. Improvement of microcirculation for Patients 1-DN and 2-MG

Patients 1-DN and 2-MG were administered:

 — Reopoliglyukin (dextran) — solution;
 — Trental (pentoxifilline) 600 mg/d — tablet;
 — Actovegin (produced by animal blood) 34 ml/d — solution;
 — Solcoseryl (produced by animal blood) 4 ml/d — solution.
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7.3.6. Desensitization therapy

Patients 1-DN and 2-MG were administered antihistaminic drugs for 
desensitization with alternation:

 — Suprastin;
 — Tavegyl;
 — Promethazine hydrochloride (Pipolphen);
 — Ketotifen (Zaditen).

7.3.7. Vitamin therapy

For vitamin therapy treatment, the three patients were administered:

 — Group B (vitamins B1, B6 and B12);
 — Vitamin C;
 — Multivitamins: Centrum (in the later phase of treatment).

7.3.8. Immunostimulative therapy

For immunostimulative therapy, the three patients were administered:

 — Actovegin (produced by animal blood) 34 ml/d — solution;
 — Solcoseryl (produced by animal blood) 4 ml/d — solution.

7.3.9. Pain control

For the purpose of pain relief, various non-steroid anti-inflammatory, 
non-narcotic and narcotic analgesic drugs were used.

7.3.10. Psychological therapy

For psychological treatment, the three patients were provided with therapy 
consultations and sedative drugs and tranquilizers:

 — Alora (natural sedative drug);
 — Diazepam.

7.3.11. Topical treatment for cutaneous radiation syndrome

The topical treatment for CRS is presented in Fig. 47.
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Occasional, less intrusive dressings

Topical antiseptic solutions

Antibacterial, enzymatic and 
combined preparations

(ointments, creams, gels, spray, 
dressings)

Ointment silvadene, ointment irucsol, solcoseryl gel and 
cream, panthenol spray, olasolum spray, PhagoBioDerm -

biodegradable polymer impregnated with ciprofloxacin and 
lytic bacteriophages, corticotull (impregnated with 

hydrocortisone, neomycin, polymixin B and glycerine)  

Potassium permanganate solution, 3% hydrogen peroxide

The dressings were applied once every two days, 
premedication with non-narcotic analgesics and topical, 

terminal anaesthesia with 10% lidocaine aerosol

FIG. 47.  Topical treatment for CRS.

8. DIAGNOSIS AND TREATMENT OF PATIENT 1-DN 
IN A SPECIALIZED HOSPITAL 

IN THE RUSSIAN FEDERATION 

8.1. MEDICAL STATUS ON ADMISSION

On 21 February 2002 (day 81 after exposure), Patient 1-DN was admitted to 
the State Research Centre (SRC), Institute of Biophysics, in Moscow. The clinic 
cooperates with the World Health Organization European Centre in providing 
help to those involved in radiological accidents.

On arrival, Patient 1-DN complained of feeling weak, his temperature 
increased in the evening and he felt pain in the radial ulcer areas located on his 
back. He also felt faint owing to poor nutrition.

In addition to expressed hyperpigmentation and atrophy of the skin on the 
left and partially on the right side of his back, there were ulcer defects in the 
shape of an ‘8’ (10 cm and 3 cm in diameter). The ulcer was covered with a 
thin layer of fibrin, which was difficult to remove (see Fig. 48). Following an 
auscultation examination, noises could be heard when he breathed. And when 
he breathed deeply, noises could also be heard originating from the lung area. 
He complained of chest pains.
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FIG. 48.  Radiation ulcer on the back of Patient 1-DN, 15 February 2002 (day 75 after 
exposure).

8.2. MEDICAL EXAMINATIONS

The X ray examinations made on 22 February and 6 March 2002 revealed 
lung emphysema, diffusive pneumosclerosis, metapneumatic local fibrosis 
and chronic bronchitis. The walls of the bronchial tubes and roots of the lungs 
were compact and contained calcifications. The interlobe pleura were compact 
on both the right and left side. The possibility of pneumoconiosis was not 
excluded. Figure 49 is the chest X ray examination made on 6 March, which 
shows infiltrative foci and calcifications in the roots of the lungs. This presented 
difficulties in the diagnostics of the acute phase of the lung radiation injury.

A CT scan performed on 27 February 2002 enabled the medical team to 
obtain an improved image of the lungs, as the vessel components and single 
micro focal areas (measuring 0.6 cm) could be observed. In both lungs (in the 
right mainly in the upper and middle lobes, in the left mainly in the lower lobe), 
there were subpleural and paravasal areas and zones of lung tissue compression 
(0.8 to 4–6 cm in diameter), which surged together and partially transformed into 
pleural commissures. There were single paratracheal and bifurcated lymph nodes 
in the mediastinum (up to 1 cm in diameter).
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FIG. 49.  Chest radiography of Patient 1-DN, 6 March 2002 (day 94 after exposure).

The fibrobronchoscopy performed on 18 March 2002 revealed a bronchial 
mucous membrane in the oedema, a large amount of mucous purulent phlegm 
and deformation of the orifice of the upper lobe bronchial tube on the right side. 
In the histological samples examined, a moderate lymphatic and granulated 
infiltration was found. A second fibrobronchoscopy revealed the effects of pus 
bronchitis. A broncho-alveolar lavage was performed using a pathological liquid 
and the luminescent microscopy of sediment showed two Koch bacilli.

The ECG showed moderate sinus tachycardia, with a heart rate of 92 bpm. 
The electrical heart axis was positioned normally. The echocardiography 
identified an insignificant dilatation of the right auricle, with tricuspidal 
regurgitation of 1–2 degrees. The global contractility of the left ventricle was 
without peculiarities.
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Blood analyses were conducted, which revealed:

 — Iron deficient anaemia (erythrocytes 3.45 × 1012/L, haemoglobin 101 g/L);
 — Leucocytosis (8.0–12.0 × 109/L) with a deviation of the differential count 
to the left (6–11%);

 — Accelerated erythrocyte sedimentation rate (51 mm/h);
 — Eosinophilia (11–18%);
 — Hypoproteinemia, which measured up to 63–64 g/L owing to 
hypoalbuminemia at 34 g/L. 

The cytogenetic examination of the lymphocyte blood culture showed 
that the total dose of the whole body was 2 Gy. Following the results of the 
cytogenetic examination that was conducted three months after exposure with 
the cultures of the chest bone and right iliac bone marrow, the lymphocyte doses 
of irradiation were set at 1.6 Gy and 3.3 Gy, respectively. The calculated dose 
of local irradiation for the left side of the back was 25–35 Gy. The bone marrow 
examination revealed polymorphous cellular marrow in trepanation and small 
focal hypoplasia at three months after exposure.

An analysis of the circumstances of Patient 1-DN’s irradiation found that 
he picked up the radioactive source, fixed it to a wooden stick using a long metal 
wire and then carried it on his left shoulder. The radioactive source was very 
close to his back and caused him to feel it emitting heat through his leather jacket 
and sweater. He did not change shoulders, but held the stick once with his right 
hand, and then with his left. Two centres of local radial tissue affections on the 
left side of the back formed in the shape of an ‘8’ (see Fig. 50).2 

The primary symptoms of Patient 1-DN were dizziness, nausea, vomiting 
2 h after first coming into contact with the radioactive source and a latent period 
of 10–12 days for the local radiation injury of the back tissue. The anamnesis data 
collected on days 22–23 after exposure showed hyperaemia, which was indicated 
by dry, peeling skin on the palm of the hand. 

8.3. DIAGNOSIS AND TREATMENT

The diagnosis of Patient 1-DN was acute radiation sickness in severe 
forms from highly uniform beta–gamma irradiation. This included bone marrow 
syndrome of a moderate degree, acute local radial injuries on the back surface 

2 It should be noted that there were differences between the description of the 
circumstances provided by the Patient 1-DN when in Georgia and when he was hospitalized in 
the Russian Federation.
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area of the thorax to a severe degree (III) of 5% of the total body surface and 
moderate degree (II) of 10% square of the total body surface and on both hands 
to a light degree (I) of 2% square of the total body surface. 

8.3.1.  Tuberculosis

Patient 1-DN was diagnosed with disseminated tuberculosis of the lungs 
(type mycobacterium), which was in a recovery phase. The operation on the 
local radiation injury was subsequently postponed owing to the diagnosis of 
tuberculosis. He received conservative treatment of the local radiation injury as 
an alternative, which consisted of absorbing, non-adhering antiseptic bandages 
together with an injection of pentoxifilline 200 ml/d and Actovegin 20 ml for 
reducing oxygen starvation in the tissue. The active anti-tuberculosis treatment 
consisted of:

 — Maxaquin (lomefloxacin) 400 mg/d (6 months);
 — Mikobutin (mycobutin) 450 mg/d (6 months);

FIG. 50.  Distribution of absorbed dose, using the calculations for anthropomorphic 
heterogenic phantom on the back of Patient 1-DN, which indicated he was exposed for 63 min.
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 — Pyrozinamid (pyrazinamide) 1.5 g intravenously (3 months);
 — Isoniazid 600 mg/d (3 months).

After one year, the course was repeated over one month with the 
administration of isoniazid 600 mg/d and Maxaquin (lomefloxacin) 400 mg/d.

X ray, CT and spirography examinations were performed for a dynamic 
evaluation of the functioning of the lungs and bronchial tubes. Following two and 
a half months of complex anti-tuberculosis therapy, positive dynamics appeared 
owing to the regression of the foci in the lungs (see Fig. 51). In addition, 
intoxication symptoms decreased and Patient 1-DN gained weight. The results of 
blood analyses found improvements in both the anaemia and infection.

FIG. 51.  Chest X ray of Patient 1-DN showing regression of the foci in the lungs after 
anti-tuberculosis treatment, 21 May 2002 (day 170 after exposure).

The epicentre of the local radiation injury was focused on the lower lobe of 
the left lung, which strongly indicated that this portion of lung tissue was subject 
to a maximum dose of 10 Gy. 

One year after exposure, a scar fibrosis formed in the lower lobe of the 
left lung, which was located in the epicentre of the area in which the maximal 
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dose was absorbed. The scar fibrosis formed while a metatuberculosis change in 
other parts of the lungs took place (see Figs 52 and 53). The dynamic changes in 
the lung–bronchial system corresponded quite well to the functional status of the 
lungs.

Following admission to the clinic (three months after exposure), 
Patient 1-DN complained of moderate tightening in the lungs. This could have 
been conditioned by an active progression of tuberculosis and the local alveoli 
oedema, which was a result of the radiation injury to the lungs and which was 
characterized by the lung volume capability (LVC) diminishing (60%). In 
April 2002, after complex anti-tuberculosis therapy, the LVC level practically 
returned to normal (87%).

FIG. 52.  Chest X ray of Patient 1-DN after treatment of tuberculosis over a period of nine 
months, 10 December 2002 (day 373 after exposure).
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FIG. 53.  Chest X ray of Patient 1-DN showing the scar fibrosis that had formed in the lower 
part of the left lung, 14 July 2003 (day 589 after exposure).

8.3.2. Local radiation injury

On 29 May 2002, an operation was performed which consisted of a 
necrectomy of the radial ulcers and the application of a split dermatome autograft 
that was taken from the front surface of the left hip. However, during the 
post-operative period, the skin grafts failed to acclimatize (see Fig. 54). 

The bottom of the wound developed partially necrotized tissue. Single 
hearths of weak granulations were found in the muscles that had stitches 
positioned at angles in the upper and lower part of the wound. This caused the 
skin grafts to spontaneously detach and increased the amount of separated skin. 
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Pathogenic Staphylococcus appeared, causing the wound to widen to 16–20 cm. 
Considering the sickliness of the wound and indications of drug dependency, 
it was decided to continue surgical wound cleansing under anaesthesia using 
vacuum bandages and antibiotics, which took into consideration the sensitivity 
of the Staphylococcus. However, the application of the vacuum bandages and the 
bottom of the wound became covered with fibrin very fast, as shown in Figs 55 
and 56, causing Patient 1-DN’s condition to deteriorate.

Five necrectomies were performed consecutively. By day 300 after 
exposure, vacuum bandages were applied more tightly in the upper medial and 
lateral edges of the wound, causing granulations to appear more flourishingly 
(see Fig. 57). 

A second necrectomy of the wound and a skin transplantation of the 
granulated wound areas were performed on 6 September 2002 (see Fig. 58). 

After the fibrin was removed from the wound, it reduced in depth. 
Practically 70% of the surface epithelized, except the central part and the lower 
medial edge of the wound (see Figs 59–61).

FIG. 54.  Late radiation ulcer on the back of Patient 1-DN, 13 June 2002 (day 193 after 
exposure).



90

FIG. 55.  Late radiation ulcer on the back of Patient 1-DN, 24 June 2002 (day 204 after 
exposure).

FIG. 56.  Late radiation ulcer on the back of Patient 1-DN, 2 July 2002 (day 212 after 
exposure).
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FIG. 57.  Late radiation ulcer on the back of Patient 1-DN, 4 September 2002 (day 276 after 
exposure).

FIG. 58.  Repeated necrectomy on Patient 1-DN, 6 September 2002 (day 278 after exposure).
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FIG. 59.  Late radiation ulcer on Patient 1-DN, 9 October 2002 (day 311 after exposure).

FIG. 60.  Late radiation ulcer on Patient 1-DN, 15 October 2002 (day 317 after exposure).
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FIG. 61.  Late radiation ulcer on Patient 1-DN, 25 October 2002 (day 327 after exposure).

On 2 December 2002, the necrectomy of the non-epithelized wound areas 
and plastic surgery of two split grafts were performed (see Fig. 62). The grafts 
were taken from the right hip and were placed on the central part of the wound 
between the angle of the left shoulder blade and the lower edge of the wound.

FIG. 62.  Late radiation ulcer on Patient 1-DN, 2 December 2002 (day 365 after exposure).
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Considering that the wound in the area of the shoulder blade angle did not 
heal and there were erosions in the lower-medial departments of the left side of 
the back under the dry crusted areas (see Figs 63–65), a decision was made to 
stretch the skin from part of the right shoulder blade and the left side of the chest 
in order to harvest a skin transplantation from a larger area. 

FIG. 63.  Late radiation ulcer on Patient 1-DN, 13 January 2003 (day 407 after exposure).

FIG. 64.  Late radiation ulcer on Patient 1-DN, 25 February 2003 (day 450 after exposure).
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FIG. 65.  Late radiation ulcer on Patient 1-DN, 25 February 2003 (day 450 after exposure).

On 15 April 2003, two expanders (700 ml each) were attached to the right 
half of the back and a third expander was attached on the left side surface of the 
chest (see Fig. 66).

FIG. 66.  Late radiation ulcer on Patient 1-DN, 15 April 2003 (day 499 after exposure).
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Two and a half months after the expanders were attached, the stitches 
healed and the square of skin from the autotransplantation gradually increased in 
size. On 5 June 2003, the fibrosis perforated tissue was removed. A resection of 
periosteum was performed on the shoulder blade and the fifth rib. A major plastic 
surgical operation was performed for the simultaneous transfer of the right side 
of the shoulder blade skin sized 28–30 cm, and a section of the skin from the 
left side of the chest into the middle of the radial affection. An autodermoplastic 
operation of three skin sections taken from the side surfaces of both hips was 
performed on the area of the body where the skin was transplanted (see Fig. 67).

FIG. 67.   Autografting on Patient 1-DN, 5 June 2003 (day 550 after exposure).

On day 10 after the operation, despite vigorous antibacterial and vessel 
therapy, Patient 1-DN appeared to have necrosis at the edges of the skin grafts. 
Most of the area covered by the three skin segments failed to acclimatize.

Following a histological examination, scars appeared on the incised tissue, 
along with fibrosis and an infection. The infection was purulent and appeared 
in deep layers of the derma. A skin necrobiosis of the skin grafts also developed 
(see Fig. 68).

By the middle of July 2003 (one year and seven months after exposure), 
the general condition of Patient 1-DN deteriorated after removing the necroses: 
his temperature increased to 38.0–39.0°C, he was shivering and suffered from 
intense pains that developed in the left shoulder blade area. The mobility of the 
sixth, seventh and eighth ribs was examined after the bandaging was removed 
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(see Figs 69–72). It was suspected that osteomyelitis had developed, and there 
were pathological fractures to the sixth, seventh and eighth ribs. He was submitted 
for an X ray and CT examination. New bandages were applied practically every 
day that had non-adhering nets and were made from bees’ wax with antibiotic 
additives that were sensitive to the flora microorganisms (see Fig. 72).

FIG. 68.  Status of wound on Patient 1-DN, 19 June 2003, (14 days after autografting).

FIG. 69.  Status of post-operative surface of Patient 1-DN, 30 July 2003 (55 days after 
autografting).



98

FIG. 70.  Infected wound on Patient 1-DN (one year and nine months after exposure).

FIG. 71.  Infected wound on Patient 1-DN (one year and ten months after exposure).
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FIG. 72.  Non-adhering net bandages covering the wound on Patient 1-DN (one year and ten 
months after exposure).

An operation was performed on 8 September 2003, which removed part 
of the fifth, sixth seventh and eighth ribs and also treated the infected area of 
the left shoulder blade. In addition, a simultaneous autoplastics procedure 
using a movable skin graft from the hip on the right side of the wound area was 
performed during the operation (see Fig. 73).

Following a histological examination, the soft tissue and bones showed 
fibrosis and a chronic infection, with a fibrotic necrotic component. The 
examination also revealed segments of dead bone. The impact of infection was 
limited to a local radial area. An operation was performed on 11 September 2003 
to conduct an autotransplantation of skin grafts from Patient 1-DN’s hip onto the 
right and lower part of the wound area.

A digital paramagnetic resonance (DPR) examination of the bone fragments 
of the ribs and shoulder blade that had been removed during the operation 
showed that the absorbed dose was in the range of 21–37 Gy (see Table 25). The 
DPR results were higher than expected, which also indicated that the skin had 
received an even higher dose than had previously been estimated. This provides 
a compelling explanation of the ineffectiveness of the autotransplantation of 
the skin grafts, despite the use of movable, blood supplied grafts. The reason 
was that the pathological fracture had been complicated by the development of 
osteomyelitis, in addition to the radial osteoporosis that had already developed. 
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FIG. 73.  Part of the infected wound on Patient 1-DN, 8 September 2003 (day 645 after 
exposure).

TABLE 25.  DIGITAL PARAMAGNETIC RESONANCE RESULTS 
(PRELIMINARY) FROM BONE FRAGMENTS OF PATIENT 1-DN

Bone fragment Dose (Gy)

Shoulder blade ≈ 21 ± 4

V rib ≈ 23 ± 4

VI rib ≈ 37 ± 6

VII rib ≈ 27 ± 5

Two additional issues also need to be considered to explain the failure of 
the skin graft to acclimatize:

(1) Several traumatic operations had to be performed.
(2) Several local infections were also present on the wound area.
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An autotransplant operation of the omentum to cover the injury using 
movable skin grafts had been planned for the future but was not performed.

8.3.3. Treatment during and after operations

One year after exposure, obstructive changes in the bronchial tubes relating 
to Patient 1-DN’s chronic bronchitis intensified owing to the metatuberculosis 
and radial fibrosis. Pneumosclerosis in the lower lobe of the left lung developed 
with his LVC measuring 30%. The significant reduction in LVC can also be 
explained because of the large, enduring injury and the repeated reconstructive 
plastic operations that were performed.

The ECG detected dynamics in the sinus rhythm, the heart electric axe was 
found to be normal and the heart contraction frequency was 85 bpm. In the acute 
infection periods of the injury, the sinus tachycardia measured up to 109 bpm and 
deterioration of the left ventricle myocardium status was observed.

An echocardiography was performed which showed insignificant dilatation 
of the right auricle and global contraction of the left ventricle, without any 
peculiarities detected during the total observation period. In January 2003, 
indirect signs of transitory lung hypertension and insignificant degenerative 
changes of the aorta valve folds were detected. In October 2003, the heart 
chamber dimensions appeared to be normal. 

The results of the blood sample analyses for Patient 1-DN are presented in 
Table 26. Analyses of the dynamic blood samples identified frequent relapses of 
iron deficiency anaemia, which was particularly noticeable after the operations 
had been performed. This was despite a transfusion of erythromass during and 
after the operations. Normal levels of erythrocyte numbers in the blood were only 
sustainable by the constant provision of iron supplements.

Preventive measures and the treatment of infections of the injury were 
performed throughout the duration of his treatment. Antibiotics were used in a 
controlled environment and so were flora sensitivity tests (including gentamicin, 
lincomycin, meropenem, Tienam, Maxaquin, rifampicin, nystatin and Nizoral).

Following indications of significant intoxication and considering the 
complications owing to the infection of the injury (e.g. osteomyelitis in the 
post-operative period), detoxification therapy and substitution therapy (fresh 
frozen plasma, albumins, vitamins and glucose) were performed. The status of 
the wound on 10 October 2003 (day 677 after exposure) is presented in Fig. 74.
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FIG. 74.  Wound on the back of Patient 1-DN, 10 October 2003 (day 677 after exposure).

Patient 1-DN’s health deteriorated in April 2004. On the surface of the open 
wound, there was a large amount of pus secretion, and a secondary necrosis of the 
muscles, ribs, shoulder bones and vertebrae increased in depth. Repeated samples 
taken from the wound identified poly-resistant microbes, the largest quantity of 
which was the blue pus bacillus. Blood samples taken from him remained sterile 
until 27 April 2004. 

On 23 April 2004, Patient 1-DN’s condition deteriorated dramatically. 
He exhibited a high fever, signs of respiratory insufficiency (with an inspiratory 
rate of 80 per min), an expressed intoxication and an arterial hypotension. 
X ray examinations were performed that revealed pneumonic locus near the 
right root of the lung. Despite a large amount of antibiotic therapy, multi-organ 
dysfunction (respiratory, kidney hepatic, cardiovascular and wound exhaustion) 
and intoxication ensued. On 12 May 2004, his temperature increased to 39°C. 
On 13 May 2004, arterial pressure decreased to 40/20 mmHg due to septic shock. 
He was treated with massive antibacterial agents, infusion and vasopressors. He 
also suffered acute renal failure. The death of Patient 1-DN was due to fibrillation 
of the ventricles in a cardiac arrest, and it occurred at 22:55, 13 May 2004 
(day 893 after exposure).
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8.4. CONCLUSION OF PATIENT 1-DN’S MEDICAL TREATMENT

The extensive and deep local radiation injuries located in anatomic areas 
that could not be amputated, combined with damage to the underlying bone 
structures and vital internal organs, proved problematic in the administration of 
Patient 1-DN’s treatment. In addition, his severe somatic pathology debilitated 
the multilayer graft operations with axial blood supply, which were performed 
to close the wound and to restore atrophy of the exposed tissue. Covering the 
wound using Patient 1-DN’s own tissue was not possible, owing to the inability to 
prepare an autograft for the size of the area required. Furthermore, infection was 
able to enter through the areas of the skin not completely covering the wound. 
The further spread of the infection resulted in his death. 

The use of various collagen films or imitation leather that can mechanically 
close the skin completely could have been a solution in this case. However, it 
was impossible to restore the atrophy in the area of the exposed tissue, which left 
Patient 1-DN with a decreased chance of recovery. 

In addition, the dose received by Patient 1-DN on his back was the largest 
among all three exposed patients. Patient 1-DN’s heart area was also irradiated as 
a consequence of the exposure to the left side of his back. It should be noted that 
he had tuberculosis and had previously suffered from narcotism.

9. DIAGNOSIS AND TREATMENT OF PATIENT 2-MG 
IN A SPECIALIZED HOSPITAL IN FRANCE

On 21 February 2002, Patient 2-MG was admitted to the Percy Military 
Training Hospital, in Paris, France, for the treatment of severe CRS [4]. Technical 
support for the medical management was provided by the IPSN.

9.1. MEDICAL STATUS ON ADMISSION

Prior to the accident, Patient 2-MG had been in relatively good general 
health. At the IHT in T’bilisi, he had exhibited a marked haematopoietic syndrome 
followed by a spontaneous recovery. However, there was no sign of aplasia in the 
peripheral blood cells at the time of admission to the Percy Military Training 
Hospital. The blood samples taken from Patient 2-MG showed leucocytes 
levels at 6.7 × 109/L, lymphocytes at 0.99 × 109/L, platelets at 228 × 109/L 
and erythrocytes at 3.41 × 1012/L. Following admission, he complained of 
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tiredness and he was in pain. He was apyretic and his blood pressure measured 
140/90 mmHg. 

The location of the cutaneous radiological lesion covered the whole 
posterior side of the thorax from the waist up to the scapulae. The lesion was 
a wide, moist, epidermal denudation (approximately 30 cm × 20 cm), which 
covered more than 8% of the total body surface of the body, but without any 
signs of deep necrosis. A yellow fibrin layer completely covered the lesion. It 
was surrounded by a distinct contour, an inflamed halo (approximately 3 cm) and 
dyschromia of the skin (see Fig. 75). 

FIG. 75.  Lesion on Patient 2-MG, 21 February 2002 (day 81 after exposure). 

After seven days of local treatment with sulfadiazine and removal of the 
yellow fibrin layer, the central lesion was non-haemorrhagic with a granulation 
bud that exhibited yellow hypovascularized areas (see Fig. 76). The radiological 
burn was superinfected with methicillin resistant S. aureus, which was treated 
prophylactically with the antibiotics piperacillin and amikacin. The first 
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therapeutic strategy was to perform a large resection of the wound covered by an 
artificial skin graft and, three weeks later, a meshed skin autograft.

9.2. DOSIMETRIC DATA

The prognosis and treatment of severe CRS require data on 
Patient 2-MG’s clinical development in addition to the dosimetric data. A lack 
of accurate information on the exposure scenario causes difficulties in deriving 
a dose reconstruction for radiological overexposures by numerical methods. The 
absorbed dose can only be determined if both the position of the radioactive 
source and the exposure times are known. For Patient 2-MG’s exposure scenario, 
there were two main geometries: localized irradiation was superimposed onto 
whole body irradiation, thereby presenting an additional challenge in the dose 
reconstruction. An initial dose estimation was performed using the Monte Carlo 
radiation transport simulation, which was based on the description provided by 
Patient 2-MG (that indicated the period of exposure), the clinical signs of the 
lesion and the biological dosimetry [5].

A spectrometry and adjustment of the Monte Carlo radiation transport 
simulation was conducted by combining a new cytogenetic analysis on the skin 
with three bone biopsy analyses performed by electron paramagnetic resonance 
(EPR). This increased the accuracy of the absorbed dose estimation and the 
estimation of the respective contributions in the dose distribution of the localized 

FIG. 76.  Lesion on Patient 2-MG, 28 February 2002 (day 88 after exposure).
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and whole body irradiation. The whole body dose obtained from the second study 
is closer to the dose assessed by cytogenetic assay [6].

9.2.1. Skin biological dosimetry

9.2.1.1. Material and methods

Conventional biological dosimetry relies on the determination of the 
frequency of chromosomal aberrations such as dicentrics in the circulating 
lymphocytes. This approach is satisfactory and reliable when the dose is distributed 
uniformly over the whole body, but is limited in the case of localized irradiations, 
where only a small fraction of the circulating lymphocytes are irradiated.

The skin is the first organ targeted in all instances of localized overexposure, 
and the victim suffers from more or less severe burns. In most cases, surgery 
has to be performed to remove damaged tissue, thereby making a skin sample 
available for dose reconstruction. The determination of chromosome changes in 
lymphocytes is well established as a biological indicator of the dose in the case 
of whole body irradiation. For this reason, a cytogenetic technique was proposed 
for application on the skin fibroblast [7]. This approach is based on the excess 
chromosome segments determined by the PCC-FISH technique, which was used 
on the fibroblasts isolated from a skin biopsy. Skin biopsies were removed from 
Patient 2-MG’s damaged tissue (see A of Fig. 77) for the cytogenetic technique 
and the fibroblasts isolated and grown over several days. After this period, the 
cells underwent PCC-FISH painting of the whole chromosome 4 (see B of 
Fig. 77), and the number of excess chromosome segments per metaphase were 
determined. An ex vivo reference curve correlating the number of excess 
chromosome segments per metaphase to the radiation dose (0–10 Gy) was 
established [7].

On day 88 after exposure, the damaged skin was removed and the fibroblasts 
were isolated. The removed skin was rectangular in shape (approximately 
40 cm × 20 cm). The skin sample was divided into 41 separate squares of 
2–4 cm2, and 18 pieces were used for the PCC-FISH analysis. Two weeks after 
the neodermis graft, two additional 0.2 cm2 skin biopsies were removed. The first 
biopsy was performed on the left inguinal area and the second on the back of 
the left ear. Fibroblasts from the two additional biopsies were then isolated and 
grown in 20 separate pieces, according to the methods described above. 

The excess chromosome segments per metaphase were measured by 
isolating and growing fibroblasts that were removed from the damaged skin, and 
a subsequent conversion to the radiation doses was performed according to the 
IPSN published reference curve (see C of Fig. 77). The dose map was obtained 
using the skin biological dosimetry technique (see D of Fig. 77).
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FIG. 77.  Skin biological dosimetry performed by the IPSN (reproduced from Ref. [7] with 
permission courtesy of the Radiation Research Society, United States of America).

9.2.1.2. Results of the skin biological dosimetry

The number of fibroblasts collected in the moist central area of the removed 
tissue was in the range of (0.03–0.36) × 106 cells/cm2 of skin. The values in the 
inflammatory part of the skin were found to be slightly higher and was in the 
range of (0.11–0.52) × 106 fibroblasts/cm2 of skin. In the peripheral area of the 
removed tissue, the density was in the range of (0.12–0.34) × 106 fibroblasts/cm2, 
whereas on the back it increased to 1.2 × 106 and 1.5 × 106 fibroblasts/cm2 for the 
left ear and left inguinal area sectors, respectively. The time taken to reach 50% 
confluence in the cell culture for applying the PCC-FISH assay was dependent 
on the area under study. Experiments could be performed on day 5 or 6 after the 
removal of the fibroblasts that had been isolated from sectors 1, 3, 9 of the left ear 
and the left inguinal area. However, fibroblasts isolated from domains 27 and 29 
were analysed on day 12. Analysis could not be performed for some sectors 
because the cells did not grow. 

The number of metaphases analysed was in the range of 21–209. The 
number of excess chromosome segments per metaphase ranged from 1 to a 
maximum of 5. For the majority of sectors, as indicated by U-test values, the 
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distribution of excess chromosome segments per metaphase did not differ 
significantly from a Poisson distribution. The highest number of excess 
chromosome segments formatted was determined in metaphase spreads obtained 
from sectors of the left bottom part of the exeresis, with yields between 0.86 
and 1.35 excess chromosome segments per metaphase. The yield of excess 
chromosome segments per metaphase in the peripheral area decreased to values 
between 0.13 and 1.08, and dropped to 0.04 and 0.0 for the left inguinal site 
and the back of the left ear, respectively. Conversion of the numbers of excess 
chromosome segments per metaphase into radiation doses was conducted using 
the ex vivo calibration curve pre-established in the experiments described above 
(see C of Fig. 77). 

On the basis of the number of excess chromosome segments per metaphase 
analysed, the sectors could be divided into three areas:

(1) In less exposed areas, such as the left inguinal area and the back of the left 
ear, doses were found to be below or equal to 3.4 Gy.

(2) In mid-range areas found on the side of the body, doses were around 5 and 
6.5 Gy.

(3) Doses located on the back of the body that were found to be higher than 
11.6 Gy, and in some areas, they were up to 21 Gy.

The dose distribution followed an isodose curve that was compatible with 
the clinical features of the lesion. 

9.2.1.3. Conclusion

The radiation dose map obtained using the skin biological dosimetry 
technique (see D of Fig. 77) was found to be in accordance with the clinical 
data and physical dosimetry, as well as with the conventional biodosimetry. 
Patient 2-MG’s biological doses were in the range of 11.5–19.1 Gy in the 
immediate area of the lesion and decreased rapidly to 5.5–5.9 Gy a few 
centimetres from where the lesion began [7].

9.2.2. Electron paramagnetic resonance dosimetry

9.2.2.1. Material and methods

The EPR spectrometry technique provides an estimate of the absorbed 
dose in irradiated inert materials by detecting paramagnetic centres, such as free 
radicals or point defects, which are specifically generated by ionizing radiation. 
The number of paramagnetic centres, induced by the interaction of ionizing 
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radiation in materials, is proportional to the absorbed dose. In most materials, the 
paramagnetic centres generated recombine very quickly, making their detection 
unlikely. In some cases of dosimetry, particularly retrospective dosimetry, the 
paramagnetic centres are stable with time or at least have a lifetime of the order 
of (or greater than) one year, which is the case for bone and dental enamel. 

EPR spectrometry is a physical method of observing the resonance created 
when the paramagnetic centre in a material absorbs a microwave when placed in 
a magnetic field. The intensity of the magnetic field and the resonance frequency 
are characteristic for a given paramagnetic centre and enable material analysis in 
the same way as, for example, measuring the infrared absorption spectrum. The 
measurement of the EPR signal amplitude of the specific paramagnetic centre 
caused by irradiation in bone or dental enamel can therefore be used to estimate 
the dose received. The EPR measurements were performed on three samples 
taken from Patient 2-MG’s bones (see Fig. 78).

FIG. 78.  Bone samples from Patient 2-MG measured using the EPR spectrometry technique 
for dose reconstruction (left) and localization of the three bone samples (right) (reproduced 
from Ref. [6] with permission courtesy of Oxford University Press).

Bone is mainly composed of hydroxyapatite crystals Ca10(PO4)6(OH)2 
bound by an organic matrix consisting mainly of collagen. The paramagnetic 
centres responsible for the EPR signal induced by irradiation occur almost 
entirely in carbonated apatites (i.e. in hydroxyapatite crystals where some of the 
OH− or PO4

3− have been replaced by CO3
2−). Bone tissue can contain up to 8% of 

these carbonated apatites. The paramagnetic centre created by the irradiation at 
room temperature are mainly CO2

− ions and to a lesser extent CO3
2− ions.
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Two bone samples used in the EPR spectrometry technique were from 
Patient 2-MG’s eleventh rib: one from the front (sample 1); and one from the 
back at the location of the radiological burns (sample 2). A third bone sample 
were pieces of vertebrae (sample 3) taken from the upper area of the back at the 
location of the radiological burns (1 cm deep).

The dose additive method was used to establish a calibration curve 
and to determine the absorbed dose in each biopsy. This method consists of 
post-irradiation of the bone to produce a calibration curve for the sample itself. 
Three different doses were successively applied (10, 20 and 40 Gy) in terms of 
air kerma with a 60Co source, in order to determine the relationship between the 
EPR signal amplitude and the absorbed dose.

The relationship is linear for bone and passes through the abscissa at the 
initial dose, provided there is no signal saturation. This method has the advantage 
of overcoming the variability between samples, since it is always the same 
material that is irradiated and measured. Conversion factors from dose in air to 
dose in bone for this case were estimated, taking into account calculated energy 
spectra at each location of the bone samples and the energy response of the bone 
EPR signal. The EPR spectra of bone samples were recorded with an X-band 
spectrometer (of the type Bruker EMX) equipped with a high Q resonator. The 
spectra were recorded according to IPSN protocol with a modulation frequency 
of 100 kHz, modulation amplitude of 0.3 mT and a microwave power of 2 mW.

9.2.2.2. Results of EPR dosimetry

A full report of the doses measured by EPR spectrometry on the bone 
samples are provided in Ref. [5], and Table 27 presents a summary of the results. 
The results are of a wide range (from 4.5 Gy to almost 50 Gy), which confirms 
the high heterogeneity of the irradiation and the hypothesis assumed for the 
exposure scenario.

TABLE 27.  TOTAL DOSE ON BONE SAMPLES BY THE 
EPR TECHNIQUE

Sample Total dose (Gy)

1 (front rib) 4.5 ± 1.1

2 (back rib) 48.4 ± 1.8

3 (vertebrae) 12.5 ± 1.0
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9.2.3. Dose reconstruction by numerical simulation

The dose reconstruction by numerical simulation, based on Monte Carlo 
calculations, first required the determination of the absorbed dose rate in free air 
at different distances from the source. Using this information, an assessment of 
the dose received by Patient 2-MG in terms of dose gradient in the tissue, and in 
terms of dose to the skin, organs and whole body, was then performed.

9.2.3.1. Material and methods

The calculations were carried out using the Monte Carlo radiation transport 
simulation code, MCNP4C2 (Monte Carlo N-Particle), developed at Los Alamos 
National Laboratory [8] with a general purpose Monte Carlo code for neutron, 
photon and electron transport. The geometry of MCNP4C2 treats an arbitrary 
3-D configuration of user defined materials in geometric cells bounded by first 
degree and second degree surfaces and fourth degree elliptical tori. The cells 
are defined by intersections, unions and complements of the regions bounded 
by surfaces. The cells can be filled with materials of arbitrary composition and 
density.

The geometry of the radioactive source was defined in MCNP4C2 using 
two concentric cylinders with the dimensions indicated in Fig. 79. The inner 
cylinder of the radioactive source was filled with strontium titanate, which has 
a density of 5.12 g/cm3. The casing (outer cylinder) of the radioactive source 
was made of iron, with a density of 7.87 g/cm3. The emission spectrums of 90Sr 
and 90Y were taken into account in the calculations. Strontium is in a secular 

FIG. 79.  Radioactive sources in the recovery location (left) and front and top view of the 
radioactive sources (right) (reproduced from Ref. [6] with permission courtesy of Oxford 
University Press).



115

equilibrium with its daughter 90Y, which ensured the electrons emitted by 90Y 
were also taken into account in the calculations. The activities of the radioactive 
sources were assumed to be equal to 1.3 × 1015 Bq for both 90Sr and 90Y. 

Strontium-90 and 90Y are beta emitters with a mean energy equal to 
196 keV and 934 keV, respectively. A simplified graphical representation of the 
beta spectrum of each element is shown in Fig. 80. 

FIG. 80.  Beta spectra of 90Sr and 90Y.

Within the material that comprises the RTG, the electrons emitted by 90Sr 
and 90Y produce X rays by bremsstrahlung, with energy that ranges from 0 to the 
maximum energy of the electrons (i.e. 2.28 MeV). The mean path of electrons 
of 2.28 MeV in iron is 0.2 cm. Owing to the thickness of the iron source casing 
(2 cm), all electrons are consequently contained inside the radioactive source. 
The only particles escaping from the radioactive source are X rays. The depth 
dose of X rays with an energy range of 10 keV to 1 MeV in soft tissue is shown in 
Fig. 81. The curves are normalized to 1 at the entrance. The data were calculated 
using mass energy absorption coefficients µen/ρ [9].

The Cristy numerical anthropomorphic phantom [10] was used as the 
MCNP4C2 input to simulate Patient 2-MG (see Fig. 82). This phantom, 
developed at Oak Ridge National Laboratory, represents a standard adult male 
and includes the main tissue and organs. Three tissue compositions and densities 
are distinguished: soft tissue (1.04 g/cm3), lung tissue (0.296 g/cm3) and skeleton 
tissue (1.4 g/cm3). The phantom was surrounded by air (0.001 g/cm3) in the 
MCNP4C2 calculations.
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FIG. 81.  Depth dose of X rays with an energy range of 10 keV to 1 MeV in soft tissue.

FIG. 82.  Modelling of numerical phantom and radioactive source for MCNP4C2 calculations 
(left image reproduced with permission courtesy of IRSN, France; right image reproduced 
from Ref. [6] with permission courtesy of Oxford University Press).
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The dose rate in free air was calculated at contact with the radioactive 
source and at distances of 0.25 m, 0.5 m and 1 m from its surface. The mean 
energy was determined as an average over both the fluence spectrum and the 
dose spectrum.

According to Patient 2-MG’s clinical signs, the radioactive source was 
located on the back of the phantom at 2 cm from the skin. However, without 
knowledge of the exposure time, the calculations can only provide a dose 
distribution per unit of time.

9.2.3.2. Results of the simulation 

The absorbed dose rates in free air (Gy/h) on contact with the radioactive 
source and at distances of 0.25 m, 0.5 m and 1 m from its surface are given 
in Table 28 and Fig. 83. For comparison, Table 28 includes the dose rate at 
contact with the radioactive source taken from the technical specification and 
measurements obtained on site at 1 m. The mean energy averaged over the 
fluence spectrum and the mean energy averaged over the dose spectrum for each 
distance are also given in Table 28.

TABLE 28.  DOSE RATE IN FREE AIR, FLUENCE AVERAGED MEAN 
ENERGY AND DOSE AVERAGED MEAN ENERGY AT DIFFERENT 
DISTANCES FROM THE SURFACE OF THE SOURCE

Distance from 
the surface of 
the source (m)

X ray dose rate 
(Gy/h)

Measurements 
(Gy/h)

Mean energy 
(fluence) (keV)

Mean energy 
(dose) (keV)

0 (contact) 235 230a 374 549

0.25 7 —b 392 568

0.50 2 —b 394 571

1 0.6 1c 395 572

a Non-validated data (from source technical notice): 24 000 R/h. 
b —: data not available.
c On site measurements: 100 R/h (at this energy range, 1 R = 9.6 10−3 Gy).
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FIG. 83.  Calculated dose rate in free air (Gy/h) on contact with the radioactive source and at 
distances of 0.25 m, 0.5 m and 1 m from its surface.

The fluence spectrum and dose spectrum provided in Table 28 at 0 m 
(contact) and at 1 m from the surface of the radioactive source are shown in 
Figs 84 and 85, respectively.

FIG. 84.  Calculated fluence and dose spectra at 0 m (contact) with the radioactive source in 
free air.
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FIG. 85.  Calculated fluence and dose spectra at 1 m from the surface of the radioactive source 
in free air.

9.2.3.3. Conclusion

The absorbed dose rate in free air is very high at contact with the radioactive 
source, which was calculated to be more than 200 Gy/h, and decreases roughly 
with respect to the inverse square law for distances greater than a few tens of 
centimetres from its surface. These results are consistent with the measurements 
performed at contact with the radioactive source and at a distance of 1 m, as 
shown in the third column of Table 28.

9.2.4. Assessment of the exposure time and determination of the total dose 

According to the hypothesis of the exposure scenario, the dose measured 
by EPR spectrometry in each sample corresponds to a total dose composed of 
the dose due to local irradiation plus a dose due to a homogeneous irradiation of 
the whole body. For the local irradiation, the doses at the location in which the 
bone samples were taken are linked by a proportionality factor determined by 
the simulations. This problem can be solved by a system of three equations (see 
Eqs (7–9)) [6]:

EPR D LOCAL D HOM D

EPR D LOCAL D HOM D

EPR D LOCAL D

_ _ _

_ _ _

_ _

1 1

2 2

3 3

= +
= +
= +HHOM D_










 (7)
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where

EPR_D1/2/3 is the total dose calculated using the EPR measurement 
technique on bone samples 1/2/3;

LOCAL_D1/2/3 is the dose to bone samples 1/2/3 owing to the local irradiation;

and HOM_D is the dose due to the whole body irradiation.

LOCAL_D1, LOCAL_D2 and LOCAL_D3 are linked by a proportionality 
factor given by the dose rate distribution, which is given as:
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where

LOCAL_D1/2/3_RATE is the local dose rate for the location of bone samples 1/2/3 
owing to the local irradiation as determined by calculations, and k12/13/23 are 
constants estimated by the Monte Carlo calculations.

From Eq. (8):
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Therefore, the deduced data are then:

(a) The local dose at the location of the bone samples:

LOCAL D EPR D EPR D

LOCAL D LOCAL D

_ _ _

_ _

2 1 2 1

1 2
12

12

= −( ) ( )−





= ×

k

k

LLOCAL D LOCAL D LOCAL D_ _ _3 2 123 13= =










k k

 (10)



121

(b) The dose due to the homogeneous irradiation:
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(c) The exposure time:
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where t is the exposure time for local irradiation. The dose rate that was 
calculated for the local dose at the location of the bone samples was deduced by 
the exposure time.

For the chosen geometric configuration, the dose rates of bone samples 1, 
2 and 3 are 2 Gy/h, 109 Gy/h and 22 Gy/h respectively. Using Eqs (10–12), the 
doses owing to the local irradiation at the location of the bone samples are then 
calculated (i.e. 1 Gy, 45 Gy and 9 Gy for samples 1, 2 and 3, respectively). The 
exposure time of the local irradiation was deduced to be approximately 30 min 
and the additional homogeneous dose was calculated to be 3.5 Gy.

9.2.5. Organ doses

The mean absorbed dose owing to the local irradiation for an exposure 
time equal to 30 min and the total mean absorbed dose owing to the local and 
homogenous irradiations for different organs and regions of the body are given 
in Fig. 86. The mean total dose to the organs ranged from 3.5 Gy to more than 
18 Gy. Figure 86 shows that in the case of local irradiation, the kidneys received 
a high mean absorbed dose, as they were located very close to the radioactive 
source. The mean dose to the whole body is approximately 5 Gy, which is 
consistent with the value of 4.4 Gy obtained by the biological dosimetry using 
the cytogenetic technique performed by the IPSN.
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* ABM: active bone narrow.
* ABM: active bone marrow.

FIG. 86.  Mean absorbed dose for local irradiation for an exposure time equal to 30 min 
and the mean absorbed dose for homogenous irradiation for different organs and regions of 
Patient 2-MG’s body.

The EPR measurements provided very accurate and objective points of 
normalization for the numerical simulations when the scenarios were not well 
known, which is usually the case for accidental exposures. However, the ex vivo 
EPR technique is limited by its invasiveness and can only be used for specific 
situations.

9.2.6. Conclusion of Patient 2-MG’s dosimetry

The physical dose reconstruction was performed by the IPSN for 
Patient 2-MG using classical biological dosimetry, skin biological dosimetry, EPR 
measurements on bone samples and Monte Carlo calculations. The dosimetric 
results showed that the mean dose to the organs was extremely heterogeneous, 
ranging from several Gy to more than 20–25 Gy. The combination of the 
Monte Carlo calculations and the classical biological dosimetry, skin biological 
dosimetry and EPR technique were successfully used to estimate the dose 
distribution in the tissue with reasonable accuracy and helped the development of 
the treatment strategy. Patient 2-MG received a total body irradiation estimated at 
6 Gy, and the time of the localized exposure was estimated to be 30 min.
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9.3. DIAGNOSIS AND TREATMENT

The clinical development of the lesion and the dose reconstruction indicated 
CRS. The lesion was severe and covered more than 8% of the total body surface, 
which had received more than 20–25 Gy. 

Despite the high doses received locally to the thoracic area, Patient 2-MG 
did not develop radio-induced pneumonitis or a major pulmonary fibrosis. 
The general pulmonary function was normal. However, the CT scans revealed 
a much localized fibrosis at the right apex (see Fig. 87) and a pleural effusion 
predominant on the right side (see Fig. 88) on day 109 after exposure.

The principle clinical symptom of the lesion was the pain felt by 
Patient 2-MG. Therefore, the systemic treatment was focused on alleviating this 
pain. High doses of morphine sulphate (over 100 mg/d) were required to achieve 
this, and the amounts administered were quickly reduced after each surgical 
procedure. The morphine he was provided on request was accompanied with a 
neuroleptic (levomepromazine) and an anxiolytic.

FIG. 87.  CT scan of Patient 2-MG showing localized fibrosis at the right apex, 21 March 2002 
(day 109 after exposure).
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FIG. 88.  CT scan of Patient 2-MG showing a pleural effusion predominant on the right side, 
21 March 2002 (day 109 after exposure).

9.4. DESCRIPTION OF THE SURGICAL PROCEDURES

9.4.1. Artificial skin graft on day 88 after exposure

The first excision of the lesion (see Fig. 89) was 8–10 cm wide, which 
included the inflammatory area of the healthy cutaneous zone, and a deep 
excision was made to the aponeurosis of the paravertebral muscles.

The resection area was covered with a synthetic dermal matrix (Integra) (see 
Fig. 90). The matrix was composed of a double layer with a sheet of collagen, 
which was treated to increase the colonization of cells from the viable tissue 
underneath. The upper surface of the matrix was made of a silicone layer. This 
layer was completely transparent, which enabled examination of the lesion below.

Figure 91 presents the histological changes of the skin of Patient 2-MG 
following exposure to ionizing radiation. A photo of his lesion is given in A of 
Fig. 91, B is a graphic illustration of the lesion and the position of the biopsies 
(G2 to G34), and C shows the results of the haematoxylin–eosin staining 
(HES) (x40), Ki67 immunostaining (x40), Sirius red staining (collagen) (x10) 
and Bax (x40) immunostaining of the skin biopsies as a function of the position 
in the skin lesion (G2 to G34).
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FIG. 89.  First excision on Patient 2-MG, 28 February 2002 (day 88 after exposure).

FIG. 90.  Artificial derma (Integra) on Patient 2-MG, 28 February 2002 (day 88 after 
exposure).
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FIG. 91.  Histological changes of Patient 2-MG’s skin following exposure to ionizing radiation 
(reproduced from Ref. [11] with permission courtesy of Radiation Research Society, United 
States of America).

The examination of HES sections revealed common histological features 
of moist desquamation. A marked epidermolysis associated with a loss of 
epidermis adhesiveness to the basal layer and a microvascular destruction was 
observed at different locations within the lesion. The absence of dermal necrosis 
was confirmed using Bax immuno-nistochemical staining (C of Fig. 91). The 
epidermal hyperproliferative response Ki67, the perivascular inflammatory cell 
infiltration and the extracellular matrix protein deposition (i.e. collagen) revealed 
a healing process surrounding the lesion (C of Fig. 91) [11].

9.4.2. First skin autograft 

Figure 92 shows the artificial derma covering the lesion after 22 days of 
development. The artificial skin appeared normal and exhibited a predominantly 
fawn colour, which was typical for this type of autograft. 
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FIG. 92.  Artificial derma covering the lesion on Patient 2-MG after 22 days of development, 
22 March 2002 (day 110 after exposure).

Despite the normal appearance of the Integra areas, the artificial skin graft 
was found not to have been colonized by fibroblasts and endothelial cells in large 
areas. This was particularly the case in the middle section of the lesion, which 
meant the silicon sheet had to be removed (see Fig. 93).

The wound was covered with a thin skin graft measuring 0.3 mm, which 
had been harvested from the thigh and meshed threefold (see Fig. 94).

9.4.3. Second skin autograft 

The development on 50% of the surface of the graft was unfavourable and 
was characterized by large devascularisation areas with an irregular shape (yellow 
area), which were observed on day 27 after the skin autograft (see Fig. 95).

A second skin autograft was performed after the removal of the yellow 
devascularized zones (see Fig. 96). The dermo-epidermic graft (measuring 
0.3 mm), which was meshed twofold, had been taken from the posterior part of 
the right thigh and was placed on the paravertebral and left subscapular areas.

9.4.4. Third skin autograft 

On day 43 after the second skin autograft, its development showed a 
recovery of approximately 50% on the surface (see Fig. 97).
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FIG. 93.  Silicon sheet removed from Patient 2-MG, 22 March 2002 (day 110 after exposure).

FIG. 94.  First autograft on Patient 2-MG, 22 March 2002 (day 110 after exposure).
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FIG. 95.  Development of the first autograft on Patient 2-MG, 18 April 2002 (day 137 after 
exposure).

FIG. 96.  Devascularized zones removed and second autograft performed on Patient 2-MG, 
18 April 2002 (day 137 after exposure).



130

FIG. 97.  Development after the second skin autograft on Patient 2-MG, 31 May 2002 (day 180 
after exposure).

The devascularized tissue extended below to include muscle, which was 
mainly observed in the left and right paravertebral areas. The atonic tissue, the 
‘fish flesh coloured’ muscle fibres and a dorsal spine vertebra were removed 
(see Fig. 98). 

FIG. 98.  Excision on Patient 2-MG, 31 May 2002 (day 180 after exposure).
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The dorsal spine vertebra bone sample that was removed was used for 
further dose assessment using the EPR technique. The dose was calculated to be 
12.5 ± 1.0 Gy. A thin skin graft (measuring 0.3 mm), which was meshed twofold 
and had been taken from the posterolateral part of the left thigh, was grafted in 
the three excised areas (see Fig. 99).

FIG. 99.  Third skin autograft on Patient 2-MG, 31 May 2002 (day 180 after exposure).

Over several months, the development of Patient 2-MG’s health was 
characterized by a stable condition. An increase in surface recovery of the lesion 
was not observed, despite three successive excisions of the necrotic tissue, 
which were conducted on days 264, 290 and 306 after exposure. These surgical 
excisions were combined with local treatment using the vacuum assisted closer 
technique, which theoretically promotes the neoangiogenesis and the budding of 
the wound. Figure 100 shows the extension of the superinfected tissue with a 
necrotic part after the third skin autograft.

9.4.5. Fourth skin autograft 

A surgical excision of the lesion down to the bone was performed, 
which displayed several dorsal spine vertebrae and the posterior eleventh rib 
(see Fig. 101). 
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FIG. 100.  Development after the third skin autograft on Patient 2-MG, 23 August 2002 
(day 264 after exposure).

FIG. 101.  Evolution of the third skin autograft on Patient 2-MG, 8 November 2002 (day 341 
after exposure).
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A fourth skin autograft, meshed twofold, which had been harvested from 
the posterior part of the left thigh, was applied (see Fig. 102). 

FIG. 102.  Fourth autograft harvested from the posterior part of the left thigh of Patient 2-MG, 
8 November 2002 (day 341 after exposure).

Patient 2-MG’s health continued to develop unfavourably. Ninety-nine days 
after the fourth skin autograft, the open lesion that was not cured by successive 
grafting procedures remained uncovered down to the bone (see Fig. 103). 
Consequently, a new therapeutic strategy was taken to cover this area with a 
vascularized flap. The localization of the radiological lesion at the thoracic level 
enabled the use of an omentum flap.

9.4.6. Omentum flap and fifth skin autograft 

The omentum is a double fold of peritoneum attached to the stomach by a 
certain amount of the abdominal viscera. The omentum flap was removed from 
the peritoneal cavity in order to keep its vascular pedicle connected with the left 
gastro-epiploic artery. The lesion area was widely abraded, and all tissue with 
a fragile cicatrization were removed in a large circular area (around 30 cm in 
diameter). The dorsal spine vertebrae were resected from the eleventh thoracic 
to the third lumbar vertebra. A fragment of the exposed eleventh rib was also 
excised. The omentum flap was transferred from the peritoneal cavity to the level 
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of the lesion on the back through a subcutaneous tunnel excavated after resection 
of the lateral arc of the tenth left rib (see Fig. 104).

FIG. 103.  Evolution of the fourth autograft on Patient 2-MG, 24 February 2003 (day 449 
after exposure).

FIG. 104.  Transfer of the omentum flap from the peritoneal cavity to the level of the lesion 
on the back of Patient 2-MG, through a subcutaneous tunnel excavated after resection of the 
lateral arc of the tenth left rib, 24 February 2003 (day 449 after exposure).
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The vascularized omentum flap was positioned onto the abraded area and 
attached at the peripheral level (see Fig. 105).

A fifth skin autograph (measuring 0.4 mm), which had been taken from the 
external and anterior part of the left thigh and meshed 1.5-fold, was performed on 
the surface of the omentum flap (see Fig. 106). 

FIG. 105.  Vascularized omentum flap positioned onto the abraded area of the lesion of 
Patient 2-MG and attached at the peripheral level, 24 February 2003 (day 449 after exposure).

FIG. 106.  Fifth skin autograph performed on Patient 2-MG, 24 February 2003 (day 449 after 
exposure).
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Following the fifth skin autograph, Patient 2-MG’s development and 
recovery were favourable. The lesion healed on day 490 after exposure 
(see Fig. 107). 

FIG. 107.  The lesion on Patient 2-MG, 6 April 2003 (day 490 after exposure).

9.5. CONCLUSION OF PATIENT 2-MG’S MEDICAL TREATMENT 

The general therapeutic strategy used for the treatment of severe CRS is the 
iteration of comprehensive excisions and autografts until the healing of the lesion 
or halting of its extension. In this case, however, as the lesion could not be cured 
by autografts because of the hypovascularization, a vascularized flap was used 
for the final covering.

The treatment of Patient 2-MG over approximately 16 months can be 
divided into three successive phases:

(1) Excision and covering with an artificial skin graft followed by autograft;
(2) Iterative excisions and autografts alternately with vacuum assisted closure 

dressings;
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(3) Final covering with a vascularized omentum flap, which was selected due 
to the thoracic localization of the lesion.

Patient 2-MG was sent home on 18 April 2003 (day 502 after exposure), 
when functional recovery to normal life was complete. He was in a generally 
good condition, and the covering of the lesion was found to be stable. A complete 
epidermization and non-morphinic antalgic was used to control the residual pain. 
Since his return to Georgia, no medical information has been obtained.

10. CONCLUSIONS

The review of radiological accidents is a mechanism for feeding back 
operational experience to reduce the likelihood of similar accidents in the future 
and to mitigate their consequences if they occur. Such reviews add to the body 
of technical and medical knowledge and illustrate principles and criteria used, 
or which could have been considered, in policy and decision making. A number 
of lessons are not unique to this accident but are worth reiterating in this 
publication, and the IAEA has collected lessons learned from other radiological 
accidents [12–15].

The medical management of the victims and the source recovery operation 
were adequate with the support of the relevant national, regional and local 
organizations, and with international assistance that combined professional 
experience in, and knowledge of, radiation protection. 

Experience from this accident demonstrates a need for nationwide 
dissemination of information to general practitioners on basic radiation biology, 
associated clinical symptoms and the medical management of people overexposed 
to ionizing radiation. This can be accomplished in the form of national training 
workshops. A roster of doctors specializing in radiation induced injuries can 
be kept by general practitioners and regulatory authorities for reference. These 
specializations would include treatment of CRS, ARS and comparable radiation 
injuries. 

As in the case of this accident, the IAEA provides assistance, upon 
request, under the Assistance Convention to Member States in response to 
radiation emergencies. In the framework of the Assistance Convention, the IAEA 
established an Emergency Response Network (ERNET) in 2000, which was 
subsequently renamed Response and Assistance Network (RANET) in 2010. The 
IAEA RANET is a mechanism that provides for an integrated system through 
which States, their competent authorities, international organizations, technical 
experts and the IAEA Secretariat can effectively coordinate the provision of 
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assistance for response to incidents or emergencies within the framework of the 
Assistance Convention.

The major cause of the accident was the improper and unauthorized 
abandonment of eight 90Sr radioactive sources in Georgia of which only six 
have so far been found. In addition, there were no clear labels or radiation signs 
on the sources that conveyed the potential radiation hazard. It is necessary for 
the labelling and warnings on radioactive sources to be regulated to a unified 
standard and to be in harmony with international standards such as ISO 361:1975 
of the International Organization for Standardization [16].



139

Appendix I 
 

CALCULATIONS USED FOR ESTIMATIONS 
OF THE WORKING TIME NEAR 

THE RADIOACTIVE SOURCES DURING THE RECOVERY

At the recovery location, the radioactive sources were isolated from 
the roads with a heap of earth or stones, which served as shielding. This was 
convenient for performing preparatory work (e.g. parking the container vehicles 
for the radioactive sources and arranging the auxiliary instruments). However, the 
removal of the radioactive sources from their original location and positioning 
them in open areas caused the protective shielding to be lost and consequently 
exposed the operating personnel to increased dose rates.

It was assumed that someone starting from distance LS approached the 
radioactive source, where the dose rate d(r) in sieverts per hour at a distance of r 
metres is described by the following expression:

d r
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r
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2  (13)

where A0 is the gamma ray dose constant (Sv·m2·h−1).
The minimum distance from the radioactive source that needed to be 

reached is equal to LW, and the constant velocity of the person’s motion is equal 
to V. The dose received by the person during motion will be equal to:
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where

D0 is the dose received by the worker approaching the source (Sv);
t is the time integration variable (s);
r is the distance integration variable (m);
V is the velocity of the worker approaching the source (m/h);
LW is the minimum distance of the worker from the source (m);
LS is the initial distance of the worker from the source (m);

and d(LW) is the dose rate at the minimum distance of LW (Sv/h).
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If LS >> LW (note that this is always the case for operations performed in the 
close vicinity of a high activity radioactive source), then the dose is calculated as:

D d L
L

VW
W

0 = ( )  (15)

This result is not dependent on the starting distance LS. Therefore, the dose 
that can be received by a person approaching the radioactive source and then 
returning back to the safe distance LS without remaining near the radioactive 
source, will be twice Eq. (15):

D d L
L

VW
W= ( )

2  (16)

where D is the total dose received by the worker approaching and leaving the 
source position (Sv).

Equation (16) shows that if there is no suitable shielding available, it is 
better to locate the operating personnel as far away from the radioactive source 
as possible. However, LS does not have to be very large in order to cover the 
distance 2(LS − LW ) ≈ 2LS with a high velocity.  

For the case of the radioactive sources being recovered, the minimum 
working distance was assumed to be LW = 1 m. The dose rate at this distance 
was d(LW = 1) = 0.6 Sv/h. The operating personnel were young and healthy, so 
it can be stated that V = 10 km/h. According to the data, the dose (Eq. 16) is of 
the order of D = 0.12 mSv and is 160 times less than the maximum planned dose 
DMax = 20 mSv.

If the time allowed for a person to remain working near the radioactive 
source at the distance LW (the working distance, i.e. the distance at which the 
work has to be performed) is τW, then the total dose received per person can be 
expressed as:
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If the planned maximum dose is determined, D DWTot
Max

Maxt( )= , from 
Eq. (17) for the maximum time Max

Wt , the following equation can be applied:
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For this particular case under consideration, the second term in Eq. (18) is 
negligibly small and for the maximum working time it can be written as:
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Appendix II 
 

CALCULATIONS USED TO ESTIMATE 
THE EQUIVALENT DOSE RECEIVED BY PATIENTS 1-DN AND 2-MG

Since the radioactive sources under consideration are cylindrical, having 
almost equal height and diameter (h ≈ 2R ≈ 0.1 m), it is possible to consider them 
as spherical, for approximate estimations. Consequently, the following equation 
to calculate the dose rate can be used:

D r
A

r
( )= 0

2  (20)

where r > R is the distance from the centre of the radioactive source, and 
A0 = 0.6 Svm2/h and is a coefficient that has been well documented by 
measurements taken at large distances (where the above approximation is 
correct).

For the calculation of the local dose rate across the surface of the radioactive 
source at distance x (see Fig. 108), it was assumed the centre of the radioactive 
source is located at L0 and that the radioactive source was located above point O 
on a flat surface.

FIG. 108.  Determining the local dose rate across the surface of the radioactive source at 
distance x.

Taking into account that gamma rays are emitted in a radial direction from 
the radioactive source, the dose rate at point x can be expressed as:
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The dose rate, averaged across the area of a circle x0 radius, according to 
Eq. (21) is equal to:
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For the calculation, it was assumed that the centre of the radioactive source 
was at a distance of L0 = 0.1 m from the individual’s back (0.05 m from the 
radius of the radioactive source, plus 0.05 m from the thickness of the winter 
clothing). The radius of the overexposed area is equal to x0 = 0.25 m, which 
is approximately half of the width of the individual’s back. The formula can 
therefore be expressed as:
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Since D(L0) is the dose rate at the distance L0 = 0.1 m from the centre of the 
radioactive source:

D L
A

L
( )0

0

0
2 60= = Sv h  (24)

for    ( . )d x , the following was applied:

d x( . ) .0 0 25 60 0 2 12= ≈ × ≈ Sv h  (25)

For a 2 h exposure (based on the event narrative that the two patients 
carried the radioactive source for a period of around 2 h each), this gives the dose 
as D = 24 Sv, which is in good agreement with the estimations obtained from 
Patient 2-MG’s dosimetry (D = 20–25 Gy, see Section 9.2.6).

It is important to note that the position of the radioactive source was not 
fixed and moved randomly along the carrier’s back during motion, which would 
have caused the dose distribution on the back to be quite heterogeneous.
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ABBREVIATIONS

ARS acute radiation syndrome
Assistance Convention Convention on Assistance in the Case of a Nuclear 

Accident or Radiological Emergency
CRS cutaneous radiation syndrome
CT computed tomography
DESCD Department of Emergency Situations and Civil 

Defence of the Ministry of Internal Affairs, 
Georgia

DPR digital paramagnetic resonance
ECG electrocardiography
EPR electron paramagnetic resonance
FISH fluorescence in situ hybridization
G-CSF granulocyte colony stimulating factor
HES haematoxylin–eosin staining
IHT Institute of Hematology and Transfusiology, T’bilisi, 

Georgia
IPSN Institute for Protection and Nuclear Safety (Institut de 

protection et de sûreté nucléaire)
IRSN Institute for Radiological Protection and Nuclear 

Safety (Institut de radioprotection et de sûreté 
nucléaire)

LVC lung volume capability
NRSS Nuclear and Radiation Safety Service, Ministry of 

Environment Protection of Georgia
RTG radioisotope thermoelectric generator
TLD thermoluminescent dosimeter
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